Cargando…
Exploring Relationships Between Tweet Numbers and Over-the-counter Drug Sales for Allergic Rhinitis: Retrospective Analysis
BACKGROUND: Health-related social media data are increasingly being used in disease surveillance studies. In particular, surveillance of infectious diseases such as influenza has demonstrated high correlations between the number of social media posts mentioning the disease and the number of patients...
Autores principales: | Wakamiya, Shoko, Morimoto, Osamu, Omichi, Katsuhiro, Hara, Hideyuki, Kawase, Ichiro, Koshiba, Ryuji, Aramaki, Eiji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851323/ https://www.ncbi.nlm.nih.gov/pubmed/35107434 http://dx.doi.org/10.2196/33941 |
Ejemplares similares
-
Causal Relationships Among Pollen Counts, Tweet Numbers, and Patient Numbers for Seasonal Allergic Rhinitis Surveillance: Retrospective Analysis
por: Wakamiya, Shoko, et al.
Publicado: (2019) -
Twitter-Based Influenza Detection After Flu Peak via Tweets With Indirect Information: Text Mining Study
por: Wakamiya, Shoko, et al.
Publicado: (2018) -
Tweet Classification Toward Twitter-Based Disease Surveillance: New Data, Methods, and Evaluations
por: Wakamiya, Shoko, et al.
Publicado: (2019) -
Modeling the spread of fake news on Twitter
por: Murayama, Taichi, et al.
Publicado: (2021) -
Identification of Adverse Drug Event–Related Japanese Articles: Natural Language Processing Analysis
por: Ujiie, Shogo, et al.
Publicado: (2020)