Cargando…
Digital Approaches to Automated and Machine Learning Assessments of Hearing: Scoping Review
BACKGROUND: Hearing loss affects 1 in 5 people worldwide and is estimated to affect 1 in 4 by 2050. Treatment relies on the accurate diagnosis of hearing loss; however, this first step is out of reach for >80% of those affected. Increasingly automated approaches are being developed for self-admin...
Autores principales: | Wasmann, Jan-Willem, Pragt, Leontien, Eikelboom, Robert, Swanepoel, De Wet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851345/ https://www.ncbi.nlm.nih.gov/pubmed/34919056 http://dx.doi.org/10.2196/32581 |
Ejemplares similares
-
Preliminary Evaluation of Automated Speech Recognition Apps for the Hearing Impaired and Deaf
por: Pragt, Leontien, et al.
Publicado: (2022) -
Self-Reported Hearing Loss and Pure Tone Audiometry for Screening in Primary Health Care Clinics
por: Louw, Christine, et al.
Publicado: (2018) -
Prevalence of hearing loss at primary health care clinics in South Africa
por: Louw, Christine, et al.
Publicado: (2018) -
Hearing and vision screening for preschool children using mobile technology, South Africa
por: Eksteen, Susan, et al.
Publicado: (2019) -
A Machine Learning Approach to Screen for Otitis Media Using Digital Otoscope Images Labelled by an Expert Panel
por: Sandström, Josefin, et al.
Publicado: (2022)