Cargando…
High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform
[Image: see text] Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851427/ https://www.ncbi.nlm.nih.gov/pubmed/35113536 http://dx.doi.org/10.1021/acs.analchem.1c04843 |
_version_ | 1784652818351652864 |
---|---|
author | Yatsyna, Vasyl Abikhodr, Ali H. Ben Faleh, Ahmed Warnke, Stephan Rizzo, Thomas R. |
author_facet | Yatsyna, Vasyl Abikhodr, Ali H. Ben Faleh, Ahmed Warnke, Stephan Rizzo, Thomas R. |
author_sort | Yatsyna, Vasyl |
collection | PubMed |
description | [Image: see text] Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differences, and their interrogation with a tunable infrared laser provides vibrational fingerprints for unambiguous database-enabled identification. Nevertheless, wide analytical application of this technique requires high-throughput approaches for acquisition of vibrational spectra of all species present in complex mixtures. In this work, we present a novel multiplexed approach and demonstrate its utility for cryogenic ion spectroscopy of peptides and glycans in mixtures. Since the method is based on Hadamard transform multiplexing, it yields infrared spectra with an increased signal-to-noise ratio compared to a conventional signal averaging approach. |
format | Online Article Text |
id | pubmed-8851427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-88514272022-02-18 High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform Yatsyna, Vasyl Abikhodr, Ali H. Ben Faleh, Ahmed Warnke, Stephan Rizzo, Thomas R. Anal Chem [Image: see text] Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differences, and their interrogation with a tunable infrared laser provides vibrational fingerprints for unambiguous database-enabled identification. Nevertheless, wide analytical application of this technique requires high-throughput approaches for acquisition of vibrational spectra of all species present in complex mixtures. In this work, we present a novel multiplexed approach and demonstrate its utility for cryogenic ion spectroscopy of peptides and glycans in mixtures. Since the method is based on Hadamard transform multiplexing, it yields infrared spectra with an increased signal-to-noise ratio compared to a conventional signal averaging approach. American Chemical Society 2022-02-03 2022-02-15 /pmc/articles/PMC8851427/ /pubmed/35113536 http://dx.doi.org/10.1021/acs.analchem.1c04843 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Yatsyna, Vasyl Abikhodr, Ali H. Ben Faleh, Ahmed Warnke, Stephan Rizzo, Thomas R. High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform |
title | High-Throughput Multiplexed Infrared Spectroscopy
of Ion Mobility-Separated Species Using Hadamard Transform |
title_full | High-Throughput Multiplexed Infrared Spectroscopy
of Ion Mobility-Separated Species Using Hadamard Transform |
title_fullStr | High-Throughput Multiplexed Infrared Spectroscopy
of Ion Mobility-Separated Species Using Hadamard Transform |
title_full_unstemmed | High-Throughput Multiplexed Infrared Spectroscopy
of Ion Mobility-Separated Species Using Hadamard Transform |
title_short | High-Throughput Multiplexed Infrared Spectroscopy
of Ion Mobility-Separated Species Using Hadamard Transform |
title_sort | high-throughput multiplexed infrared spectroscopy
of ion mobility-separated species using hadamard transform |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851427/ https://www.ncbi.nlm.nih.gov/pubmed/35113536 http://dx.doi.org/10.1021/acs.analchem.1c04843 |
work_keys_str_mv | AT yatsynavasyl highthroughputmultiplexedinfraredspectroscopyofionmobilityseparatedspeciesusinghadamardtransform AT abikhodralih highthroughputmultiplexedinfraredspectroscopyofionmobilityseparatedspeciesusinghadamardtransform AT benfalehahmed highthroughputmultiplexedinfraredspectroscopyofionmobilityseparatedspeciesusinghadamardtransform AT warnkestephan highthroughputmultiplexedinfraredspectroscopyofionmobilityseparatedspeciesusinghadamardtransform AT rizzothomasr highthroughputmultiplexedinfraredspectroscopyofionmobilityseparatedspeciesusinghadamardtransform |