Cargando…
A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers
X-ray free-electron lasers (FELs) deliver ultrabright X-ray pulses, but not the sequences of phase-coherent pulses required for time-domain interferometry and control of quantum states. For conventional split-and-delay schemes to produce such sequences, the challenge stems from extreme stability req...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851450/ https://www.ncbi.nlm.nih.gov/pubmed/35140184 http://dx.doi.org/10.1073/pnas.2117906119 |
_version_ | 1784652823670030336 |
---|---|
author | Reiche, Sven Knopp, Gregor Pedrini, Bill Prat, Eduard Aeppli, Gabriel Gerber, Simon |
author_facet | Reiche, Sven Knopp, Gregor Pedrini, Bill Prat, Eduard Aeppli, Gabriel Gerber, Simon |
author_sort | Reiche, Sven |
collection | PubMed |
description | X-ray free-electron lasers (FELs) deliver ultrabright X-ray pulses, but not the sequences of phase-coherent pulses required for time-domain interferometry and control of quantum states. For conventional split-and-delay schemes to produce such sequences, the challenge stems from extreme stability requirements when splitting Ångstrom wavelength beams, where the tiniest path-length differences introduce phase jitter. We describe an FEL mode based on selective electron-bunch degradation and transverse beam shaping in the accelerator, combined with a self-seeded photon emission scheme. Instead of splitting the photon pulses after their generation by the FEL, we split the electron bunch in the accelerator, prior to photon generation, to obtain phase-locked X-ray pulses with subfemtosecond duration. Time-domain interferometry becomes possible, enabling the concomitant program of classical and quantum optics experiments with X-rays. The scheme leads to scientific benefits of cutting-edge FELs with attosecond and/or high-repetition rate capabilities, ranging from the X-ray analog of Fourier transform infrared spectroscopy to damage-free measurements. |
format | Online Article Text |
id | pubmed-8851450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-88514502022-08-10 A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers Reiche, Sven Knopp, Gregor Pedrini, Bill Prat, Eduard Aeppli, Gabriel Gerber, Simon Proc Natl Acad Sci U S A Biological Sciences X-ray free-electron lasers (FELs) deliver ultrabright X-ray pulses, but not the sequences of phase-coherent pulses required for time-domain interferometry and control of quantum states. For conventional split-and-delay schemes to produce such sequences, the challenge stems from extreme stability requirements when splitting Ångstrom wavelength beams, where the tiniest path-length differences introduce phase jitter. We describe an FEL mode based on selective electron-bunch degradation and transverse beam shaping in the accelerator, combined with a self-seeded photon emission scheme. Instead of splitting the photon pulses after their generation by the FEL, we split the electron bunch in the accelerator, prior to photon generation, to obtain phase-locked X-ray pulses with subfemtosecond duration. Time-domain interferometry becomes possible, enabling the concomitant program of classical and quantum optics experiments with X-rays. The scheme leads to scientific benefits of cutting-edge FELs with attosecond and/or high-repetition rate capabilities, ranging from the X-ray analog of Fourier transform infrared spectroscopy to damage-free measurements. National Academy of Sciences 2022-02-09 2022-02-15 /pmc/articles/PMC8851450/ /pubmed/35140184 http://dx.doi.org/10.1073/pnas.2117906119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Reiche, Sven Knopp, Gregor Pedrini, Bill Prat, Eduard Aeppli, Gabriel Gerber, Simon A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers |
title | A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers |
title_full | A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers |
title_fullStr | A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers |
title_full_unstemmed | A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers |
title_short | A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers |
title_sort | perfect x-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851450/ https://www.ncbi.nlm.nih.gov/pubmed/35140184 http://dx.doi.org/10.1073/pnas.2117906119 |
work_keys_str_mv | AT reichesven aperfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT knoppgregor aperfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT pedrinibill aperfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT prateduard aperfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT aeppligabriel aperfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT gerbersimon aperfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT reichesven perfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT knoppgregor perfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT pedrinibill perfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT prateduard perfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT aeppligabriel perfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers AT gerbersimon perfectxraybeamsplitteranditsapplicationstotimedomaininterferometryandquantumopticsexploitingfreeelectronlasers |