Cargando…

Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods

[Image: see text] Traditional drug production is a long and complex process that leads to new drug production. The virtual screening technique is a computational method that allows chemical compounds to be screened at an acceptable time and cost. Several databases contain information on various aspe...

Descripción completa

Detalles Bibliográficos
Autores principales: Altalib, Mohammed Khaldoon, Salim, Naomie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851658/
https://www.ncbi.nlm.nih.gov/pubmed/35187297
http://dx.doi.org/10.1021/acsomega.1c04587
_version_ 1784652867515187200
author Altalib, Mohammed Khaldoon
Salim, Naomie
author_facet Altalib, Mohammed Khaldoon
Salim, Naomie
author_sort Altalib, Mohammed Khaldoon
collection PubMed
description [Image: see text] Traditional drug production is a long and complex process that leads to new drug production. The virtual screening technique is a computational method that allows chemical compounds to be screened at an acceptable time and cost. Several databases contain information on various aspects of biologically active substances. Simple statistical tools are difficult to use because of the enormous amount of information and complex data samples of molecules that are structurally heterogeneous recorded in these databases. Many techniques for capturing the biological similarity between a test compound and a known target ligand in LBVS have been established. However, despite the good performances of the above methods compared to their prior, especially when dealing with molecules that have homogeneous active structural elements, they are not satisfied when dealing with molecules that are structurally heterogeneous. Deep learning models have recently achieved considerable success in a variety of disciplines due to their powerful generalization and feature extraction capabilities. Also, the Siamese network has been used in similarity models for more complicated data samples, especially with heterogeneous data samples. The main aim of this study is to enhance the performance of similarity searching, especially with molecules that are structurally heterogeneous. The Siamese architecture will be enhanced using two similarity distance layers with one fusion layer to further improve the similarity measurements between molecules and then adding many layers after the fusion layer for some models to improve the retrieval recall. In this architecture, several methods of deep learning have been used, which are long short-term memory (LSTM), gated recurrent unit (GRU), convolutional neural network-one dimension (CNN1D), and convolutional neural network-two dimensions (CNN2D). A series of experiments have been carried out on real-world data sets, and the results have shown that the proposed methods outperformed the existing methods.
format Online
Article
Text
id pubmed-8851658
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-88516582022-02-18 Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods Altalib, Mohammed Khaldoon Salim, Naomie ACS Omega [Image: see text] Traditional drug production is a long and complex process that leads to new drug production. The virtual screening technique is a computational method that allows chemical compounds to be screened at an acceptable time and cost. Several databases contain information on various aspects of biologically active substances. Simple statistical tools are difficult to use because of the enormous amount of information and complex data samples of molecules that are structurally heterogeneous recorded in these databases. Many techniques for capturing the biological similarity between a test compound and a known target ligand in LBVS have been established. However, despite the good performances of the above methods compared to their prior, especially when dealing with molecules that have homogeneous active structural elements, they are not satisfied when dealing with molecules that are structurally heterogeneous. Deep learning models have recently achieved considerable success in a variety of disciplines due to their powerful generalization and feature extraction capabilities. Also, the Siamese network has been used in similarity models for more complicated data samples, especially with heterogeneous data samples. The main aim of this study is to enhance the performance of similarity searching, especially with molecules that are structurally heterogeneous. The Siamese architecture will be enhanced using two similarity distance layers with one fusion layer to further improve the similarity measurements between molecules and then adding many layers after the fusion layer for some models to improve the retrieval recall. In this architecture, several methods of deep learning have been used, which are long short-term memory (LSTM), gated recurrent unit (GRU), convolutional neural network-one dimension (CNN1D), and convolutional neural network-two dimensions (CNN2D). A series of experiments have been carried out on real-world data sets, and the results have shown that the proposed methods outperformed the existing methods. American Chemical Society 2022-02-03 /pmc/articles/PMC8851658/ /pubmed/35187297 http://dx.doi.org/10.1021/acsomega.1c04587 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Altalib, Mohammed Khaldoon
Salim, Naomie
Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods
title Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods
title_full Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods
title_fullStr Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods
title_full_unstemmed Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods
title_short Similarity-Based Virtual Screen Using Enhanced Siamese Deep Learning Methods
title_sort similarity-based virtual screen using enhanced siamese deep learning methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851658/
https://www.ncbi.nlm.nih.gov/pubmed/35187297
http://dx.doi.org/10.1021/acsomega.1c04587
work_keys_str_mv AT altalibmohammedkhaldoon similaritybasedvirtualscreenusingenhancedsiamesedeeplearningmethods
AT salimnaomie similaritybasedvirtualscreenusingenhancedsiamesedeeplearningmethods