Cargando…

In silico analyses of maleidride biosynthetic gene clusters

Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the ‘core’ set of genes required to construct the...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Katherine, de Mattos-Shipley, Kate M. J., Willis, Christine L., Bailey, Andrew M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851701/
https://www.ncbi.nlm.nih.gov/pubmed/35177129
http://dx.doi.org/10.1186/s40694-022-00132-z
Descripción
Sumario:Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the ‘core’ set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40694-022-00132-z.