Cargando…
A multi-step approach to managing missing data in time and patient variant electronic health records
OBJECTIVE: Electronic health records (EHR) hold promise for conducting large-scale analyses linking individual characteristics to health outcomes. However, these data often contain a large number of missing values at both the patient and visit level due to variation in data collection across facilit...
Autores principales: | Cesare, Nina, Were, Lawrence P. O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851714/ https://www.ncbi.nlm.nih.gov/pubmed/35177096 http://dx.doi.org/10.1186/s13104-022-05911-w |
Ejemplares similares
-
Characterizing and Managing Missing Structured Data in Electronic Health Records: Data Analysis
por: Beaulieu-Jones, Brett K, et al.
Publicado: (2018) -
Strategies for Handling Missing Data in Electronic Health Record Derived Data
por: Wells, Brian J., et al.
Publicado: (2013) -
Imputation of missing values for electronic health record laboratory data
por: Li, Jiang, et al.
Publicado: (2021) -
Use of electronic health record data mining for heart failure subtyping
por: Vuori, Matti A., et al.
Publicado: (2023) -
Electronic health record and genome-wide genetic data in Generation Scotland participants
por: Kerr, Shona M., et al.
Publicado: (2017)