Cargando…
CR-I-TASSER: Assemble Protein Structures from Cryo-EM Density Maps using Deep Convolutional Neural Networks
Cryo-electron microscopy (cryo-EM) has become a leading approach for protein structure determination, but it remains challenging to accurately model atomic structures with cryo-EM density maps. We propose a hybrid method, CR-I-TASSER, which integrates deep neural-network learning with I-TASSER assem...
Autores principales: | Zhang, Xi, Zhang, Biao, Freddolino, Peter L, Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8852347/ https://www.ncbi.nlm.nih.gov/pubmed/35132244 http://dx.doi.org/10.1038/s41592-021-01389-9 |
Ejemplares similares
-
Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations
por: Zheng, Wei, et al.
Publicado: (2021) -
A Tool for Segmentation of Secondary Structures in 3D Cryo-EM Density Map Components Using Deep Convolutional Neural Networks
por: Mu, Yongcheng, et al.
Publicado: (2021) -
Density modification of cryo-EM maps
por: Terwilliger, Thomas C., et al.
Publicado: (2020) -
Progressive and accurate assembly of multi-domain protein structures from cryo-EM density maps
por: Zhou, Xiaogen, et al.
Publicado: (2020) -
I-TASSER server for protein 3D structure prediction
por: Zhang, Yang
Publicado: (2008)