Cargando…
Artificial Intelligence to Improve Risk Prediction with Nuclear Cardiac Studies
PURPOSE OF REVIEW: As machine learning-based artificial intelligence (AI) continues to revolutionize the way in which we analyze data, the field of nuclear cardiology provides fertile ground for the implementation of these complex analytics. This review summarizes and discusses the principles regard...
Autores principales: | Juarez-Orozco, Luis Eduardo, Klén, Riku, Niemi, Mikael, Ruijsink, Bram, Daquarti, Gustavo, van Es, Rene, Benjamins, Jan-Walter, Yeung, Ming Wai, van der Harst, Pim, Knuuti, Juhani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8852880/ https://www.ncbi.nlm.nih.gov/pubmed/35171443 http://dx.doi.org/10.1007/s11886-022-01649-w |
Ejemplares similares
-
Hybridizing machine learning in survival analysis of cardiac PET/CT imaging
por: Juarez-Orozco, Luis Eduardo, et al.
Publicado: (2023) -
PET Molecular Targets and Near-Infrared Fluorescence Imaging of Atherosclerosis
por: Celeng, Csilla, et al.
Publicado: (2018) -
Fractional Flow Reserve or Coronary Flow Reserve for the Assessment of Myocardial Perfusion: Implications of FFR as an Imperfect Reference Standard for Myocardial Ischemia
por: Stegehuis, Valérie E., et al.
Publicado: (2018) -
The Potential Role of Iodine-123 Metaiodobenzylguanidine Imaging for Identifying Sustained Ventricular Tachycardia in Patients with Cardiomyopathy
por: Klein, Thomas, et al.
Publicado: (2013) -
PET Imaging of the Human Nicotinic Cholinergic Pathway in Atherosclerosis
por: Bauwens, Matthias, et al.
Publicado: (2015)