Cargando…
On the Maximum of a Bivariate INMA Model with Integer Innovations
We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson’s class (Anderson, 1970). The innovations have an impact on the random...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8852969/ https://www.ncbi.nlm.nih.gov/pubmed/35194392 http://dx.doi.org/10.1007/s11009-021-09920-3 |
_version_ | 1784653140502511616 |
---|---|
author | Hüsler, J. Temido, M. G. Valente-Freitas, A. |
author_facet | Hüsler, J. Temido, M. G. Valente-Freitas, A. |
author_sort | Hüsler, J. |
collection | PubMed |
description | We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson’s class (Anderson, 1970). The innovations have an impact on the random variables of the INMA model by binomial thinning. We show that the limiting distribution of the bivariate maximum is also of Anderson’s class, and that the components of the bivariate maximum are asymptotically independent. |
format | Online Article Text |
id | pubmed-8852969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-88529692022-02-18 On the Maximum of a Bivariate INMA Model with Integer Innovations Hüsler, J. Temido, M. G. Valente-Freitas, A. Methodol Comput Appl Probab Article We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson’s class (Anderson, 1970). The innovations have an impact on the random variables of the INMA model by binomial thinning. We show that the limiting distribution of the bivariate maximum is also of Anderson’s class, and that the components of the bivariate maximum are asymptotically independent. Springer US 2022-02-15 2022 /pmc/articles/PMC8852969/ /pubmed/35194392 http://dx.doi.org/10.1007/s11009-021-09920-3 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Hüsler, J. Temido, M. G. Valente-Freitas, A. On the Maximum of a Bivariate INMA Model with Integer Innovations |
title | On the Maximum of a Bivariate INMA Model with Integer Innovations |
title_full | On the Maximum of a Bivariate INMA Model with Integer Innovations |
title_fullStr | On the Maximum of a Bivariate INMA Model with Integer Innovations |
title_full_unstemmed | On the Maximum of a Bivariate INMA Model with Integer Innovations |
title_short | On the Maximum of a Bivariate INMA Model with Integer Innovations |
title_sort | on the maximum of a bivariate inma model with integer innovations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8852969/ https://www.ncbi.nlm.nih.gov/pubmed/35194392 http://dx.doi.org/10.1007/s11009-021-09920-3 |
work_keys_str_mv | AT huslerj onthemaximumofabivariateinmamodelwithintegerinnovations AT temidomg onthemaximumofabivariateinmamodelwithintegerinnovations AT valentefreitasa onthemaximumofabivariateinmamodelwithintegerinnovations |