Cargando…
Intrinsic Decomposition Method Combining Deep Convolutional Neural Network and Probability Graph Model
With the rapid development of computer vision and artificial intelligence, people are increasingly demanding image decomposition. Many of the current methods do not decompose images well. In order to find the decomposition method with high accuracy and accurate recognition rate, this study combines...
Autor principal: | Yu, Yuanhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853765/ https://www.ncbi.nlm.nih.gov/pubmed/35186064 http://dx.doi.org/10.1155/2022/4463918 |
Ejemplares similares
-
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites
por: Zhang, Jidong, et al.
Publicado: (2022) -
Medical Image Retrieval Using Empirical Mode Decomposition with Deep Convolutional Neural Network
por: Zhang, Shaomin, et al.
Publicado: (2020)