Cargando…
Oral Administration of Bacterial β Cell Expansion Factor A (BefA) Alleviates Diabetes in Mice with Type 1 and Type 2 Diabetes
Diabetes mellitus (DM) is a group of metabolic diseases, and there is an urgent need to develop new therapeutic DM oral drugs with fewer side effects and sound therapeutic efficacy. In this study, a β cell expansion factor A (BefA) production strain of Escherichia coli (BL21-pet 28C-BefA) was constr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853770/ https://www.ncbi.nlm.nih.gov/pubmed/35186190 http://dx.doi.org/10.1155/2022/9206039 |
Sumario: | Diabetes mellitus (DM) is a group of metabolic diseases, and there is an urgent need to develop new therapeutic DM oral drugs with fewer side effects and sound therapeutic efficacy. In this study, a β cell expansion factor A (BefA) production strain of Escherichia coli (BL21-pet 28C-BefA) was constructed, and the antidiabetes effect of BefA was evaluated using type 1 DM (T1DM) and type 2 DM (T2DM) mice models. The T1DM mice results indicated that BefA significantly reduced blood glucose levels; exerted a protective effect on islet β cell morphology; downregulated the expressions of TLR-4, p-NFκB/NFκB, and Bax/Bcl-2, and the secretion levels of IL-1β and TNF-α; increased the expression of PDX-1 protein and insulin secretion in a concentration-dependent manner; and restored the disturbed microbial diversity to normal levels. Similarly with the T1DM mice, BefA obviously increased islet β cells and reduced the inflammatory reaction and apoptosis in T2DM mice, as well as improved liver lipid metabolism by downregulating the expressions of CEBP-α, ACC, and Fasn; inhibited the synthesis of triglycerides; and induced Cpt-1, Hmgcs2, and Pparα in a concentration-dependent manner. In conclusion, BefA alleviates diabetes via increasing the number of islet β cells, reducing the inflammatory reaction and apoptosis, improving liver lipid metabolism, and restoring microbial diversity to normal levels, which provides a new strategy for a DM oral drug. |
---|