Cargando…
Measurement of Body Surface Area for Psoriasis Using U-net Models
During the evaluation of body surface area (BSA), precise measurement of psoriasis is crucial for assessing disease severity and modulating treatment strategies. Physicians usually evaluate patients subjectively through direct visual evaluation. However, judgment based on the naked eye is not reliab...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853796/ https://www.ncbi.nlm.nih.gov/pubmed/35186115 http://dx.doi.org/10.1155/2022/7960151 |
_version_ | 1784653303795154944 |
---|---|
author | Lin, Yih-Lon Huang, Adam Yang, Chung-Yi Chang, Wen-Yu |
author_facet | Lin, Yih-Lon Huang, Adam Yang, Chung-Yi Chang, Wen-Yu |
author_sort | Lin, Yih-Lon |
collection | PubMed |
description | During the evaluation of body surface area (BSA), precise measurement of psoriasis is crucial for assessing disease severity and modulating treatment strategies. Physicians usually evaluate patients subjectively through direct visual evaluation. However, judgment based on the naked eye is not reliable. This study is aimed at evaluating the use of machine learning methods, specifically U-net models, and developing an artificial neural network prediction model for automated psoriasis lesion segmentation and BSA measurement. The segmentation of psoriasis lesions using deep learning is adopted to measure the BSA of psoriasis so that the severity can be evaluated automatically in patients. An automated psoriasis lesion segmentation method based on the U-net architecture was used with a focus on high-resolution images and estimation of the BSA. The proposed method trained the model with the same patch size of 512 × 512 and predicted testing images with different patch sizes. We collected 255 high-resolution psoriasis images representing large anatomical sites, such as the trunk and extremities. The average residual of the ground truth image and the predicted image was approximately 0.033. The interclass correlation coefficient between the U-net and dermatologist's segmentations measured in the ratio of affected psoriasis over the body area in the test dataset was 0.966 (95% CI: 0.981–0.937), indicating strong agreement. Herein, the proposed U-net model achieved dermatologist-level performance in estimating the involved BSA for psoriasis. |
format | Online Article Text |
id | pubmed-8853796 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-88537962022-02-18 Measurement of Body Surface Area for Psoriasis Using U-net Models Lin, Yih-Lon Huang, Adam Yang, Chung-Yi Chang, Wen-Yu Comput Math Methods Med Research Article During the evaluation of body surface area (BSA), precise measurement of psoriasis is crucial for assessing disease severity and modulating treatment strategies. Physicians usually evaluate patients subjectively through direct visual evaluation. However, judgment based on the naked eye is not reliable. This study is aimed at evaluating the use of machine learning methods, specifically U-net models, and developing an artificial neural network prediction model for automated psoriasis lesion segmentation and BSA measurement. The segmentation of psoriasis lesions using deep learning is adopted to measure the BSA of psoriasis so that the severity can be evaluated automatically in patients. An automated psoriasis lesion segmentation method based on the U-net architecture was used with a focus on high-resolution images and estimation of the BSA. The proposed method trained the model with the same patch size of 512 × 512 and predicted testing images with different patch sizes. We collected 255 high-resolution psoriasis images representing large anatomical sites, such as the trunk and extremities. The average residual of the ground truth image and the predicted image was approximately 0.033. The interclass correlation coefficient between the U-net and dermatologist's segmentations measured in the ratio of affected psoriasis over the body area in the test dataset was 0.966 (95% CI: 0.981–0.937), indicating strong agreement. Herein, the proposed U-net model achieved dermatologist-level performance in estimating the involved BSA for psoriasis. Hindawi 2022-02-10 /pmc/articles/PMC8853796/ /pubmed/35186115 http://dx.doi.org/10.1155/2022/7960151 Text en Copyright © 2022 Yih-Lon Lin et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lin, Yih-Lon Huang, Adam Yang, Chung-Yi Chang, Wen-Yu Measurement of Body Surface Area for Psoriasis Using U-net Models |
title | Measurement of Body Surface Area for Psoriasis Using U-net Models |
title_full | Measurement of Body Surface Area for Psoriasis Using U-net Models |
title_fullStr | Measurement of Body Surface Area for Psoriasis Using U-net Models |
title_full_unstemmed | Measurement of Body Surface Area for Psoriasis Using U-net Models |
title_short | Measurement of Body Surface Area for Psoriasis Using U-net Models |
title_sort | measurement of body surface area for psoriasis using u-net models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853796/ https://www.ncbi.nlm.nih.gov/pubmed/35186115 http://dx.doi.org/10.1155/2022/7960151 |
work_keys_str_mv | AT linyihlon measurementofbodysurfaceareaforpsoriasisusingunetmodels AT huangadam measurementofbodysurfaceareaforpsoriasisusingunetmodels AT yangchungyi measurementofbodysurfaceareaforpsoriasisusingunetmodels AT changwenyu measurementofbodysurfaceareaforpsoriasisusingunetmodels |