Cargando…
Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and Ensemble methods
Schizophrenia is a major psychiatric disorder that imposes enormous clinical burden on patients and their caregivers. Determining classification biomarkers can complement clinical measures and improve understanding of the neural basis underlying schizophrenia. Using neuroanatomical features, several...
Autores principales: | Chilla, Geetha Soujanya, Yeow, Ling Yun, Chew, Qian Hui, Sim, Kang, Prakash, K. N. Bhanu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854385/ https://www.ncbi.nlm.nih.gov/pubmed/35177708 http://dx.doi.org/10.1038/s41598-022-06651-4 |
Ejemplares similares
-
Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: A support vector machine learning approach
por: Gould, Ian C., et al.
Publicado: (2014) -
Genetic polymorphism and neuroanatomical changes in schizophrenia
por: Năstase, Mihai Gabriel, et al.
Publicado: (2022) -
Neuroanatomical markers of speaking Chinese
por: Crinion, Jenny T., et al.
Publicado: (2009) -
Altered Neuroanatomical Signatures of Patients With Treatment-Resistant Schizophrenia Compared to Patients With Early-Stage Schizophrenia and Healthy Controls
por: Liu, Congcong, et al.
Publicado: (2022) -
Neuroanatomical correlates of psychopathology in antipsychotic-naïve schizophrenia
por: Venkatasubramanian, Ganesan
Publicado: (2010)