Cargando…
Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine
Temporal dataset shift associated with changes in healthcare over time is a barrier to deploying machine learning-based clinical decision support systems. Algorithms that learn robust models by estimating invariant properties across time periods for domain generalization (DG) and unsupervised domain...
Autores principales: | Guo, Lin Lawrence, Pfohl, Stephen R., Fries, Jason, Johnson, Alistair E. W., Posada, Jose, Aftandilian, Catherine, Shah, Nigam, Sung, Lillian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854561/ https://www.ncbi.nlm.nih.gov/pubmed/35177653 http://dx.doi.org/10.1038/s41598-022-06484-1 |
Ejemplares similares
-
EHR foundation models improve robustness in the presence of temporal distribution shift
por: Guo, Lin Lawrence, et al.
Publicado: (2023) -
Perspective Toward Machine Learning Implementation in Pediatric Medicine: Mixed Methods Study
por: Alexander, Natasha, et al.
Publicado: (2022) -
Adversarial and Random Transformations for Robust Domain Adaptation and Generalization
por: Xiao, Liang, et al.
Publicado: (2023) -
DSMRI: Domain Shift Analyzer for Multi-Center MRI Datasets
por: Kushol, Rafsanjany, et al.
Publicado: (2023) -
Temporally stable adaptation is robust, incomplete and specific
por: van der Kooij, Katinka, et al.
Publicado: (2016)