Cargando…
Three-dimensional deep learning to automatically generate cranial implant geometry
We present a 3D deep learning framework that can generate a complete cranial model using a defective one. The Boolean subtraction between these two models generates the geometry of the implant required for surgical reconstruction. There is little or no need for post-processing to eliminate noise in...
Autores principales: | Wu, Chieh-Tsai, Yang, Yao-Hung, Chang, Yau-Zen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854612/ https://www.ncbi.nlm.nih.gov/pubmed/35177704 http://dx.doi.org/10.1038/s41598-022-06606-9 |
Ejemplares similares
-
Three-dimensional geometry and topology
por: Thurston, William P, et al.
Publicado: (1997) -
Three-Dimensional geometry and topology
por: Thurston, William P.
Publicado: (1997) -
Objective Three-Dimensional Analysis of Cranial Morphology
por: Marcus, Jeffrey R, et al.
Publicado: (2008) -
Clinical Application of Three-Dimensional Printing of Polycaprolactone/Beta-Tricalcium Phosphate Implants for Cranial Reconstruction
por: Park, Hojin, et al.
Publicado: (2022) -
Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning Approach
por: Tsai, Ming-Chin, et al.
Publicado: (2022)