Cargando…

Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning

Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learn...

Descripción completa

Detalles Bibliográficos
Autores principales: Mueller, Yvonne M., Schrama, Thijs J., Ruijten, Rik, Schreurs, Marco W. J., Grashof, Dwin G. B., van de Werken, Harmen J. G., Lasinio, Giovanna Jona, Álvarez-Sierra, Daniel, Kiernan, Caoimhe H., Castro Eiro, Melisa D., van Meurs, Marjan, Brouwers-Haspels, Inge, Zhao, Manzhi, Li, Ling, de Wit, Harm, Ouzounis, Christos A., Wilmsen, Merel E. P., Alofs, Tessa M., Laport, Danique A., van Wees, Tamara, Kraker, Geoffrey, Jaimes, Maria C., Van Bockstael, Sebastiaan, Hernández-González, Manuel, Rokx, Casper, Rijnders, Bart J. A., Pujol-Borrell, Ricardo, Katsikis, Peter D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854670/
https://www.ncbi.nlm.nih.gov/pubmed/35177626
http://dx.doi.org/10.1038/s41467-022-28621-0
_version_ 1784653480983527424
author Mueller, Yvonne M.
Schrama, Thijs J.
Ruijten, Rik
Schreurs, Marco W. J.
Grashof, Dwin G. B.
van de Werken, Harmen J. G.
Lasinio, Giovanna Jona
Álvarez-Sierra, Daniel
Kiernan, Caoimhe H.
Castro Eiro, Melisa D.
van Meurs, Marjan
Brouwers-Haspels, Inge
Zhao, Manzhi
Li, Ling
de Wit, Harm
Ouzounis, Christos A.
Wilmsen, Merel E. P.
Alofs, Tessa M.
Laport, Danique A.
van Wees, Tamara
Kraker, Geoffrey
Jaimes, Maria C.
Van Bockstael, Sebastiaan
Hernández-González, Manuel
Rokx, Casper
Rijnders, Bart J. A.
Pujol-Borrell, Ricardo
Katsikis, Peter D.
author_facet Mueller, Yvonne M.
Schrama, Thijs J.
Ruijten, Rik
Schreurs, Marco W. J.
Grashof, Dwin G. B.
van de Werken, Harmen J. G.
Lasinio, Giovanna Jona
Álvarez-Sierra, Daniel
Kiernan, Caoimhe H.
Castro Eiro, Melisa D.
van Meurs, Marjan
Brouwers-Haspels, Inge
Zhao, Manzhi
Li, Ling
de Wit, Harm
Ouzounis, Christos A.
Wilmsen, Merel E. P.
Alofs, Tessa M.
Laport, Danique A.
van Wees, Tamara
Kraker, Geoffrey
Jaimes, Maria C.
Van Bockstael, Sebastiaan
Hernández-González, Manuel
Rokx, Casper
Rijnders, Bart J. A.
Pujol-Borrell, Ricardo
Katsikis, Peter D.
author_sort Mueller, Yvonne M.
collection PubMed
description Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient’s immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy.
format Online
Article
Text
id pubmed-8854670
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88546702022-03-04 Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning Mueller, Yvonne M. Schrama, Thijs J. Ruijten, Rik Schreurs, Marco W. J. Grashof, Dwin G. B. van de Werken, Harmen J. G. Lasinio, Giovanna Jona Álvarez-Sierra, Daniel Kiernan, Caoimhe H. Castro Eiro, Melisa D. van Meurs, Marjan Brouwers-Haspels, Inge Zhao, Manzhi Li, Ling de Wit, Harm Ouzounis, Christos A. Wilmsen, Merel E. P. Alofs, Tessa M. Laport, Danique A. van Wees, Tamara Kraker, Geoffrey Jaimes, Maria C. Van Bockstael, Sebastiaan Hernández-González, Manuel Rokx, Casper Rijnders, Bart J. A. Pujol-Borrell, Ricardo Katsikis, Peter D. Nat Commun Article Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient’s immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy. Nature Publishing Group UK 2022-02-17 /pmc/articles/PMC8854670/ /pubmed/35177626 http://dx.doi.org/10.1038/s41467-022-28621-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mueller, Yvonne M.
Schrama, Thijs J.
Ruijten, Rik
Schreurs, Marco W. J.
Grashof, Dwin G. B.
van de Werken, Harmen J. G.
Lasinio, Giovanna Jona
Álvarez-Sierra, Daniel
Kiernan, Caoimhe H.
Castro Eiro, Melisa D.
van Meurs, Marjan
Brouwers-Haspels, Inge
Zhao, Manzhi
Li, Ling
de Wit, Harm
Ouzounis, Christos A.
Wilmsen, Merel E. P.
Alofs, Tessa M.
Laport, Danique A.
van Wees, Tamara
Kraker, Geoffrey
Jaimes, Maria C.
Van Bockstael, Sebastiaan
Hernández-González, Manuel
Rokx, Casper
Rijnders, Bart J. A.
Pujol-Borrell, Ricardo
Katsikis, Peter D.
Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
title Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
title_full Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
title_fullStr Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
title_full_unstemmed Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
title_short Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
title_sort stratification of hospitalized covid-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854670/
https://www.ncbi.nlm.nih.gov/pubmed/35177626
http://dx.doi.org/10.1038/s41467-022-28621-0
work_keys_str_mv AT muelleryvonnem stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT schramathijsj stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT ruijtenrik stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT schreursmarcowj stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT grashofdwingb stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT vandewerkenharmenjg stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT lasiniogiovannajona stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT alvarezsierradaniel stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT kiernancaoimheh stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT castroeiromelisad stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT vanmeursmarjan stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT brouwershaspelsinge stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT zhaomanzhi stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT liling stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT dewitharm stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT ouzounischristosa stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT wilmsenmerelep stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT alofstessam stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT laportdaniquea stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT vanweestamara stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT krakergeoffrey stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT jaimesmariac stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT vanbockstaelsebastiaan stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT hernandezgonzalezmanuel stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT rokxcasper stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT rijndersbartja stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT pujolborrellricardo stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning
AT katsikispeterd stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning