Cargando…
Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning
Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learn...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854670/ https://www.ncbi.nlm.nih.gov/pubmed/35177626 http://dx.doi.org/10.1038/s41467-022-28621-0 |
_version_ | 1784653480983527424 |
---|---|
author | Mueller, Yvonne M. Schrama, Thijs J. Ruijten, Rik Schreurs, Marco W. J. Grashof, Dwin G. B. van de Werken, Harmen J. G. Lasinio, Giovanna Jona Álvarez-Sierra, Daniel Kiernan, Caoimhe H. Castro Eiro, Melisa D. van Meurs, Marjan Brouwers-Haspels, Inge Zhao, Manzhi Li, Ling de Wit, Harm Ouzounis, Christos A. Wilmsen, Merel E. P. Alofs, Tessa M. Laport, Danique A. van Wees, Tamara Kraker, Geoffrey Jaimes, Maria C. Van Bockstael, Sebastiaan Hernández-González, Manuel Rokx, Casper Rijnders, Bart J. A. Pujol-Borrell, Ricardo Katsikis, Peter D. |
author_facet | Mueller, Yvonne M. Schrama, Thijs J. Ruijten, Rik Schreurs, Marco W. J. Grashof, Dwin G. B. van de Werken, Harmen J. G. Lasinio, Giovanna Jona Álvarez-Sierra, Daniel Kiernan, Caoimhe H. Castro Eiro, Melisa D. van Meurs, Marjan Brouwers-Haspels, Inge Zhao, Manzhi Li, Ling de Wit, Harm Ouzounis, Christos A. Wilmsen, Merel E. P. Alofs, Tessa M. Laport, Danique A. van Wees, Tamara Kraker, Geoffrey Jaimes, Maria C. Van Bockstael, Sebastiaan Hernández-González, Manuel Rokx, Casper Rijnders, Bart J. A. Pujol-Borrell, Ricardo Katsikis, Peter D. |
author_sort | Mueller, Yvonne M. |
collection | PubMed |
description | Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient’s immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy. |
format | Online Article Text |
id | pubmed-8854670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88546702022-03-04 Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning Mueller, Yvonne M. Schrama, Thijs J. Ruijten, Rik Schreurs, Marco W. J. Grashof, Dwin G. B. van de Werken, Harmen J. G. Lasinio, Giovanna Jona Álvarez-Sierra, Daniel Kiernan, Caoimhe H. Castro Eiro, Melisa D. van Meurs, Marjan Brouwers-Haspels, Inge Zhao, Manzhi Li, Ling de Wit, Harm Ouzounis, Christos A. Wilmsen, Merel E. P. Alofs, Tessa M. Laport, Danique A. van Wees, Tamara Kraker, Geoffrey Jaimes, Maria C. Van Bockstael, Sebastiaan Hernández-González, Manuel Rokx, Casper Rijnders, Bart J. A. Pujol-Borrell, Ricardo Katsikis, Peter D. Nat Commun Article Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient’s immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy. Nature Publishing Group UK 2022-02-17 /pmc/articles/PMC8854670/ /pubmed/35177626 http://dx.doi.org/10.1038/s41467-022-28621-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mueller, Yvonne M. Schrama, Thijs J. Ruijten, Rik Schreurs, Marco W. J. Grashof, Dwin G. B. van de Werken, Harmen J. G. Lasinio, Giovanna Jona Álvarez-Sierra, Daniel Kiernan, Caoimhe H. Castro Eiro, Melisa D. van Meurs, Marjan Brouwers-Haspels, Inge Zhao, Manzhi Li, Ling de Wit, Harm Ouzounis, Christos A. Wilmsen, Merel E. P. Alofs, Tessa M. Laport, Danique A. van Wees, Tamara Kraker, Geoffrey Jaimes, Maria C. Van Bockstael, Sebastiaan Hernández-González, Manuel Rokx, Casper Rijnders, Bart J. A. Pujol-Borrell, Ricardo Katsikis, Peter D. Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning |
title | Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning |
title_full | Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning |
title_fullStr | Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning |
title_full_unstemmed | Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning |
title_short | Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning |
title_sort | stratification of hospitalized covid-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854670/ https://www.ncbi.nlm.nih.gov/pubmed/35177626 http://dx.doi.org/10.1038/s41467-022-28621-0 |
work_keys_str_mv | AT muelleryvonnem stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT schramathijsj stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT ruijtenrik stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT schreursmarcowj stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT grashofdwingb stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT vandewerkenharmenjg stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT lasiniogiovannajona stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT alvarezsierradaniel stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT kiernancaoimheh stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT castroeiromelisad stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT vanmeursmarjan stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT brouwershaspelsinge stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT zhaomanzhi stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT liling stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT dewitharm stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT ouzounischristosa stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT wilmsenmerelep stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT alofstessam stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT laportdaniquea stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT vanweestamara stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT krakergeoffrey stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT jaimesmariac stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT vanbockstaelsebastiaan stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT hernandezgonzalezmanuel stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT rokxcasper stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT rijndersbartja stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT pujolborrellricardo stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning AT katsikispeterd stratificationofhospitalizedcovid19patientsintoclinicalseverityprogressiongroupsbyimmunophenotypingandmachinelearning |