Cargando…
An Invertible Dynamic Graph Convolutional Network for Multi-Center ASD Classification
Autism Spectrum Disorder (ASD) is one common developmental disorder with great variations in symptoms and severity, making the diagnosis of ASD a challenging task. Existing deep learning models using brain connectivity features to classify ASD still suffer from degraded performance for multi-center...
Autores principales: | Chen, Yueying, Liu, Aiping, Fu, Xueyang, Wen, Jie, Chen, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854990/ https://www.ncbi.nlm.nih.gov/pubmed/35185454 http://dx.doi.org/10.3389/fnins.2021.828512 |
Ejemplares similares
-
Children ASD Evaluation Through Joint Analysis of EEG and Eye-Tracking Recordings With Graph Convolution Network
por: Zhang, Shasha, et al.
Publicado: (2021) -
Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional Network
por: Chen, Xin, et al.
Publicado: (2021) -
Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks
por: Marzullo, Aldo, et al.
Publicado: (2019) -
The classification of brain network for major depressive disorder patients based on deep graph convolutional neural network
por: Zhu, Manyun, et al.
Publicado: (2023) -
Multi-label classification of fundus images based on graph convolutional network
por: Cheng, Yinlin, et al.
Publicado: (2021)