Cargando…
Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark
In this work, we study the phenomenon of catastrophic forgetting in the graph representation learning scenario. The primary objective of the analysis is to understand whether classical continual learning techniques for flat and sequential data have a tangible impact on performances when applied to g...
Autores principales: | Carta, Antonio, Cossu, Andrea, Errica, Federico, Bacciu, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8855050/ https://www.ncbi.nlm.nih.gov/pubmed/35187476 http://dx.doi.org/10.3389/frai.2022.824655 |
Ejemplares similares
-
Is Class-Incremental Enough for Continual Learning?
por: Cossu, Andrea, et al.
Publicado: (2022) -
Graph embedding and geometric deep learning relevance to network biology and structural chemistry
por: Lecca, Paola, et al.
Publicado: (2023) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
Graph Neural Networks for Maximum Constraint Satisfaction
por: Tönshoff, Jan, et al.
Publicado: (2021)