Cargando…
A Novel Data Analytics-derived Metric (Nearest Cluster Distance) Is Easily Implemented in Routine Practice and Correctly Identifies Breast Cancer Cases for Quality Review
BACKGROUND: Errors in breast cancer grading and predictive testing are clinically important and can be difficult to detect in routine practice. A quality metric able to identify a subset of breast cancer cases which are high yield on quality review would be of practical clinical benefit. METHODS: Da...
Autor principal: | Whisnant, Richard E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8855323/ https://www.ncbi.nlm.nih.gov/pubmed/35223134 http://dx.doi.org/10.1016/j.jpi.2022.100005 |
Ejemplares similares
-
Theoretical properties of distance distributions and novel metrics for nearest-neighbor feature selection
por: Dawkins, Bryan A., et al.
Publicado: (2021) -
Comparing distance metrics for rotation using the k-nearest neighbors algorithm for entropy estimation
por: Huggins, David J
Publicado: (2014) -
Nearest Consensus Clustering Classification to Identify Subclasses and Predict Disease
por: Alyousef, Awad A., et al.
Publicado: (2018) -
Nearest-Neighbor Projected Distance Regression for Epistasis Detection in GWAS With Population Structure Correction
por: Arabnejad, Marziyeh, et al.
Publicado: (2020) -
Identifying G-protein Coupled Receptors Using Weighted Levenshtein Distance and Nearest Neighbor Method
por: Xu, Jian-Hua
Publicado: (2005)