Cargando…

MicroRNA-122-5p ameliorates tubular injury in diabetic nephropathy via FIH-1/HIF-1α pathway

Diabetes kidney disease (DKD) affects approximately one-third of diabetes patients, however, the specific molecular mechanism of DKD remains unclear, and there is still a lack of effective therapies. Here, we demonstrated a significant increase of microRNA-122-5p (miR-122-5p) in renal tubular cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Li, Qiu, Xinying, He, Liyu, Liu, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856027/
https://www.ncbi.nlm.nih.gov/pubmed/35166173
http://dx.doi.org/10.1080/0886022X.2022.2039194
Descripción
Sumario:Diabetes kidney disease (DKD) affects approximately one-third of diabetes patients, however, the specific molecular mechanism of DKD remains unclear, and there is still a lack of effective therapies. Here, we demonstrated a significant increase of microRNA-122-5p (miR-122-5p) in renal tubular cells in STZ induced diabetic nephropathy (DN) mice. Moreover, inhibition of miR-122-5p led to increased cell death and serve tubular injury and promoted DN progression following STZ treatment in mice, whereas supplementation of miR-122-5p mimic had kidney protective effects in this model. In addition, miR-122-5p suppressed the expression of factor inhibiting hypoxia-inducible factor-1 (FIH-1) in vitro models of DN. microRNA target reporter assay further verified FIH-1 as a direct target of miR-122-5p. Generally, FIH-1 inhibits the activity of HIF-1α. Our in vitro study further indicated that overexpression of HIF-1α by transfection of HIF-1α plasmid reduced tubular cell death, suggesting a protective role of HIF-1α in DN. Collectively, these findings may unveil a novel miR-122-5p/FIH-1/HIF-1α pathway which can attenuate the DN progression.