Cargando…
Protocol for the diagnosis of keratoconus using convolutional neural networks
Keratoconus is the corneal disease with the highest reported incidence of 1:2000. The treatment’s level of success highly depends on how early it was started. Subsequently, a fast and highly capable diagnostic tool is crucial. While there are many computer-based systems that are capable of the analy...
Autores principales: | Schatteburg, Jan, Langenbucher, Achim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856512/ https://www.ncbi.nlm.nih.gov/pubmed/35180279 http://dx.doi.org/10.1371/journal.pone.0264219 |
Ejemplares similares
-
Automated cornea diagnosis using deep convolutional neural networks based on cornea topography maps
por: Fassbind, Benjamin, et al.
Publicado: (2023) -
KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks
por: Lavric, Alexandru, et al.
Publicado: (2019) -
Excimer versus Femtosecond Laser Assisted Penetrating Keratoplasty in Keratoconus and Fuchs Dystrophy: Intraoperative Pitfalls
por: El-Husseiny, Moatasem, et al.
Publicado: (2015) -
Complementary Keratoconus Indices Based on Topographical Interpretation of Biomechanical Waveform Parameters: A Supplement to Established Keratoconus Indices
por: Goebels, Susanne, et al.
Publicado: (2017) -
Efficacy of customized corneal crosslinking versus standard corneal crosslinking in patients with progressive keratoconus (C-CROSS study): study protocol for a randomized controlled trial
por: Vandevenne, Magali M. S., et al.
Publicado: (2023)