Cargando…
Runoff Forecasting Using Machine-Learning Methods: Case Study in the Middle Reaches of Xijiang River
Runoff forecasting is useful for flood early warning and water resource management. In this study, backpropagation (BP) neural network, generalized regression neural network (GRNN), extreme learning machine (ELM), and wavelet neural network (WNN) models were employed, and a high-accuracy runoff fore...
Autores principales: | Xiao, Lu, Zhong, Ming, Zha, Dawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856602/ https://www.ncbi.nlm.nih.gov/pubmed/35187478 http://dx.doi.org/10.3389/fdata.2021.752406 |
Ejemplares similares
-
DroughtCast: A Machine Learning Forecast of the United States Drought Monitor
por: Brust, Colin, et al.
Publicado: (2021) -
Development of a Machine Learning Approach for Local-Scale Ozone Forecasting: Application to Kennewick, WA
por: Fan, Kai, et al.
Publicado: (2022) -
Machine learning-based ozone and PM2.5 forecasting: Application to multiple AQS sites in the Pacific Northwest
por: Fan, Kai, et al.
Publicado: (2023) -
Air Quality Forecast by Statistical Methods: Application to Portugal and Macao
por: Mendes, Luísa, et al.
Publicado: (2022) -
Tropical Cyclone Track Forecasting Using Fused Deep Learning From Aligned Reanalysis Data
por: Giffard-Roisin, Sophie, et al.
Publicado: (2020)