Cargando…

Rhythmicity of Prefrontal Local Field Potentials after Nucleus Basalis Stimulation

The action of acetylcholine in the cortex is critical for cognitive functions and cholinergic drugs can improve functions such as attention and working memory. An alternative means of enhancing cholinergic neuromodulation in primates is the intermittent electrical stimulation of the cortical source...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Balbir, Qi, Xue-Lian, Blake, David T., Constantinidis, Christos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856705/
https://www.ncbi.nlm.nih.gov/pubmed/35058309
http://dx.doi.org/10.1523/ENEURO.0380-21.2022
Descripción
Sumario:The action of acetylcholine in the cortex is critical for cognitive functions and cholinergic drugs can improve functions such as attention and working memory. An alternative means of enhancing cholinergic neuromodulation in primates is the intermittent electrical stimulation of the cortical source of acetylcholine, the nucleus basalis (NB) of Meynert. NB stimulation generally increases firing rate of neurons in the prefrontal cortex, however its effects on single neurons are diverse and complex. We sought to understand how NB stimulation affects global measures of neural activity by recording and analyzing local field potentials (LFPs) in monkeys as they performed working memory tasks. NB stimulation primarily decreased power in the alpha frequency range during the delay interval of working memory tasks. The effect was consistent across variants of the task. No consistent modulation in the delay interval of the task was observed in the gamma frequency range, which has previously been implicated in the maintenance of working memory. Our results reveal global effects of cholinergic neuromodulation via deep brain stimulation, an emerging intervention for the improvement of cognitive function.