Cargando…
Approaches to Federated Computing for the Protection of Patient Privacy and Security Using Medical Applications
Computing model may train on a distributed dataset using Medical Applications, which is a distributed computing technique. Instead of a centralised server, the model trains on device data. The server then utilizes this model to train a joint model. The aim of this study is that Medical Applications...
Autores principales: | Ahmed, Osman Sirajeldeen, Omer, Emad Eldin, Alshawwa, Samar Zuhair, Alazzam, Malik Bader, Khan, Reefat Arefin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856810/ https://www.ncbi.nlm.nih.gov/pubmed/35186118 http://dx.doi.org/10.1155/2022/1201339 |
Ejemplares similares
-
Nursing Care Systematization with Case-Based Reasoning and Artificial Intelligence
por: Alazzam, Malik Bader, et al.
Publicado: (2022) -
Machine Learning of ZnO Interaction with Immunoglobulins and Blood Proteins in Medicine
por: Qader Osman, Nasreddin Abdel, et al.
Publicado: (2022) -
Retracted: Approaches to Federated Computing for the Protection of Patient Privacy and Security Using Medical Applications
por: and Biomechanics, Applied Bionics
Publicado: (2023) -
A Critical Evaluation of Privacy and Security Threats in Federated Learning
por: Asad, Muhammad, et al.
Publicado: (2020) -
An Overview of Fog Computing and Edge Computing Security and Privacy Issues
por: Alwakeel, Ahmed M.
Publicado: (2021)