Cargando…
Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside
Pyranoanthocyanins are vibrant, naturally derived pigments formed by the reaction of an anthocyanin with a cofactor containing a partially negatively charged carbon. This study compared the thermal stability and degradation products of 10-carboxy-pyranocyanidin-3-glucoside (pyruvic acid cofactor), 1...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857255/ https://www.ncbi.nlm.nih.gov/pubmed/35181657 http://dx.doi.org/10.1038/s41538-022-00131-9 |
_version_ | 1784654002841976832 |
---|---|
author | Voss, Danielle M. Miyagusuku-Cruzado, Gonzalo Giusti, M. Mónica |
author_facet | Voss, Danielle M. Miyagusuku-Cruzado, Gonzalo Giusti, M. Mónica |
author_sort | Voss, Danielle M. |
collection | PubMed |
description | Pyranoanthocyanins are vibrant, naturally derived pigments formed by the reaction of an anthocyanin with a cofactor containing a partially negatively charged carbon. This study compared the thermal stability and degradation products of 10-carboxy-pyranocyanidin-3-glucoside (pyruvic acid cofactor), 10-methyl-pyranocyanidin-3-glucoside (acetone cofactor), and 10-catechyl-pyranocyanidin-3-glucoside (caffeic acid cofactor) with their anthocyanin precursor to evaluate the role of the pyranoanthocyanin C(10) substitution on stability. Pyranoanthocyanins exhibited absorbance half-lives ~2.1–8.6 times greater than cyanidin-3-glucoside, with ~15–52% of their original pigment remaining after 12 h of 90 °C heating at pH 3.0. 10-Methyl-pyranocyanidin-3-glucoside was the most stable (p < 0.01) based on UHPLC-PDA analysis, while 10-catechyl-pyranocyanidin-3-glucoside had the most stable color in part due to contribution from a colored degradation compound. Protocatechuic acid formed in all heated samples, which suggested a similar degradation mechanism among pigments. In conclusion, the C(10) substitution impacted the extent of pyranoanthocyanin stability and the degradation compounds formed. |
format | Online Article Text |
id | pubmed-8857255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88572552022-03-03 Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside Voss, Danielle M. Miyagusuku-Cruzado, Gonzalo Giusti, M. Mónica NPJ Sci Food Article Pyranoanthocyanins are vibrant, naturally derived pigments formed by the reaction of an anthocyanin with a cofactor containing a partially negatively charged carbon. This study compared the thermal stability and degradation products of 10-carboxy-pyranocyanidin-3-glucoside (pyruvic acid cofactor), 10-methyl-pyranocyanidin-3-glucoside (acetone cofactor), and 10-catechyl-pyranocyanidin-3-glucoside (caffeic acid cofactor) with their anthocyanin precursor to evaluate the role of the pyranoanthocyanin C(10) substitution on stability. Pyranoanthocyanins exhibited absorbance half-lives ~2.1–8.6 times greater than cyanidin-3-glucoside, with ~15–52% of their original pigment remaining after 12 h of 90 °C heating at pH 3.0. 10-Methyl-pyranocyanidin-3-glucoside was the most stable (p < 0.01) based on UHPLC-PDA analysis, while 10-catechyl-pyranocyanidin-3-glucoside had the most stable color in part due to contribution from a colored degradation compound. Protocatechuic acid formed in all heated samples, which suggested a similar degradation mechanism among pigments. In conclusion, the C(10) substitution impacted the extent of pyranoanthocyanin stability and the degradation compounds formed. Nature Publishing Group UK 2022-02-18 /pmc/articles/PMC8857255/ /pubmed/35181657 http://dx.doi.org/10.1038/s41538-022-00131-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Voss, Danielle M. Miyagusuku-Cruzado, Gonzalo Giusti, M. Mónica Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside |
title | Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside |
title_full | Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside |
title_fullStr | Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside |
title_full_unstemmed | Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside |
title_short | Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside |
title_sort | comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857255/ https://www.ncbi.nlm.nih.gov/pubmed/35181657 http://dx.doi.org/10.1038/s41538-022-00131-9 |
work_keys_str_mv | AT vossdaniellem comparingthethermalstabilityof10carboxy10methyland10catechylpyranocyanidin3glucosidesandtheirprecursorcyanidin3glucoside AT miyagusukucruzadogonzalo comparingthethermalstabilityof10carboxy10methyland10catechylpyranocyanidin3glucosidesandtheirprecursorcyanidin3glucoside AT giustimmonica comparingthethermalstabilityof10carboxy10methyland10catechylpyranocyanidin3glucosidesandtheirprecursorcyanidin3glucoside |