Cargando…

Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)

The aim of our observational study was to derive a small set out of 92 repeatedly measured biomarkers with optimal predictive capacity for adverse clinical events in heart failure, which could be used for dynamic, individual risk assessment in clinical practice. In 250 chronic HFrEF (CHF) patients,...

Descripción completa

Detalles Bibliográficos
Autores principales: Klimczak-Tomaniak, Dominika, de Bakker, Marie, Bouwens, Elke, Akkerhuis, K. Martijn, Baart, Sara, Rizopoulos, Dimitris, Mouthaan, Henk, van Ramshorst, Jan, Germans, Tjeerd, Constantinescu, Alina, Manintveld, Olivier, Umans, Victor, Boersma, Eric, Kardys, Isabella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857321/
https://www.ncbi.nlm.nih.gov/pubmed/35181700
http://dx.doi.org/10.1038/s41598-022-06698-3
_version_ 1784654016143163392
author Klimczak-Tomaniak, Dominika
de Bakker, Marie
Bouwens, Elke
Akkerhuis, K. Martijn
Baart, Sara
Rizopoulos, Dimitris
Mouthaan, Henk
van Ramshorst, Jan
Germans, Tjeerd
Constantinescu, Alina
Manintveld, Olivier
Umans, Victor
Boersma, Eric
Kardys, Isabella
author_facet Klimczak-Tomaniak, Dominika
de Bakker, Marie
Bouwens, Elke
Akkerhuis, K. Martijn
Baart, Sara
Rizopoulos, Dimitris
Mouthaan, Henk
van Ramshorst, Jan
Germans, Tjeerd
Constantinescu, Alina
Manintveld, Olivier
Umans, Victor
Boersma, Eric
Kardys, Isabella
author_sort Klimczak-Tomaniak, Dominika
collection PubMed
description The aim of our observational study was to derive a small set out of 92 repeatedly measured biomarkers with optimal predictive capacity for adverse clinical events in heart failure, which could be used for dynamic, individual risk assessment in clinical practice. In 250 chronic HFrEF (CHF) patients, we collected trimonthly blood samples during a median of 2.2 years. We selected 537 samples for repeated measurement of 92 biomarkers with the Cardiovascular Panel III (Olink Proteomics AB). We applied Least Absolute Shrinkage and Selection Operator (LASSO) penalization to select the optimal set of predictors of the primary endpoint (PE). The association between repeatedly measured levels of selected biomarkers and the PE was evaluated by multivariable joint models (mvJM) with stratified fivefold cross validation of the area under the curve (cvAUC). The PE occurred in 66(27%) patients. The optimal set of biomarkers selected by LASSO included 9 proteins: NT-proBNP, ST2, vWF, FABP4, IGFBP-1, PAI-1, PON-3, transferrin receptor protein-1, and chitotriosidase-1, that yielded a cvAUC of 0.88, outperforming the discriminative ability of models consisting of standard biomarkers (NT-proBNP, hs-TnT, eGFR clinically adjusted) − 0.82 and performing equally well as an extended literature-based set of acknowledged biomarkers (NT-proBNP, hs-TnT, hs-CRP, GDF-15, ST2, PAI-1, Galectin 3) − 0.88. Nine out of 92 serially measured circulating proteins provided a multivariable model for adverse clinical events in CHF patients with high discriminative ability. These proteins reflect wall stress, remodelling, endothelial dysfunction, iron deficiency, haemostasis/fibrinolysis and innate immunity activation. A panel containing these proteins could contribute to dynamic, personalized risk assessment. Clinical Trial Registration: 10/05/2013 https://clinicaltrials.gov/ct2/show/NCT01851538?term=nCT01851538&draw=2&rank=1.
format Online
Article
Text
id pubmed-8857321
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88573212022-02-22 Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study) Klimczak-Tomaniak, Dominika de Bakker, Marie Bouwens, Elke Akkerhuis, K. Martijn Baart, Sara Rizopoulos, Dimitris Mouthaan, Henk van Ramshorst, Jan Germans, Tjeerd Constantinescu, Alina Manintveld, Olivier Umans, Victor Boersma, Eric Kardys, Isabella Sci Rep Article The aim of our observational study was to derive a small set out of 92 repeatedly measured biomarkers with optimal predictive capacity for adverse clinical events in heart failure, which could be used for dynamic, individual risk assessment in clinical practice. In 250 chronic HFrEF (CHF) patients, we collected trimonthly blood samples during a median of 2.2 years. We selected 537 samples for repeated measurement of 92 biomarkers with the Cardiovascular Panel III (Olink Proteomics AB). We applied Least Absolute Shrinkage and Selection Operator (LASSO) penalization to select the optimal set of predictors of the primary endpoint (PE). The association between repeatedly measured levels of selected biomarkers and the PE was evaluated by multivariable joint models (mvJM) with stratified fivefold cross validation of the area under the curve (cvAUC). The PE occurred in 66(27%) patients. The optimal set of biomarkers selected by LASSO included 9 proteins: NT-proBNP, ST2, vWF, FABP4, IGFBP-1, PAI-1, PON-3, transferrin receptor protein-1, and chitotriosidase-1, that yielded a cvAUC of 0.88, outperforming the discriminative ability of models consisting of standard biomarkers (NT-proBNP, hs-TnT, eGFR clinically adjusted) − 0.82 and performing equally well as an extended literature-based set of acknowledged biomarkers (NT-proBNP, hs-TnT, hs-CRP, GDF-15, ST2, PAI-1, Galectin 3) − 0.88. Nine out of 92 serially measured circulating proteins provided a multivariable model for adverse clinical events in CHF patients with high discriminative ability. These proteins reflect wall stress, remodelling, endothelial dysfunction, iron deficiency, haemostasis/fibrinolysis and innate immunity activation. A panel containing these proteins could contribute to dynamic, personalized risk assessment. Clinical Trial Registration: 10/05/2013 https://clinicaltrials.gov/ct2/show/NCT01851538?term=nCT01851538&draw=2&rank=1. Nature Publishing Group UK 2022-02-18 /pmc/articles/PMC8857321/ /pubmed/35181700 http://dx.doi.org/10.1038/s41598-022-06698-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Klimczak-Tomaniak, Dominika
de Bakker, Marie
Bouwens, Elke
Akkerhuis, K. Martijn
Baart, Sara
Rizopoulos, Dimitris
Mouthaan, Henk
van Ramshorst, Jan
Germans, Tjeerd
Constantinescu, Alina
Manintveld, Olivier
Umans, Victor
Boersma, Eric
Kardys, Isabella
Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)
title Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)
title_full Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)
title_fullStr Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)
title_full_unstemmed Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)
title_short Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)
title_sort dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (bio-shift study)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857321/
https://www.ncbi.nlm.nih.gov/pubmed/35181700
http://dx.doi.org/10.1038/s41598-022-06698-3
work_keys_str_mv AT klimczaktomaniakdominika dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT debakkermarie dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT bouwenselke dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT akkerhuiskmartijn dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT baartsara dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT rizopoulosdimitris dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT mouthaanhenk dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT vanramshorstjan dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT germanstjeerd dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT constantinescualina dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT manintveldolivier dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT umansvictor dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT boersmaeric dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy
AT kardysisabella dynamicpersonalizedriskpredictioninchronicheartfailurepatientsalongitudinalclinicalinvestigationof92biomarkersbioshiftstudy