Cargando…

Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus

Eurasian spruce bark beetle, Ips typographus, is an aggressive pest among spruce vegetation. I. typographus host trees colonization is mediated by aggregation pheromone, consisting of 2-methyl-3-buten-2-ol and cis-verbenol produced in the beetle gut. Other biologically active compounds such as ipsdi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramakrishnan, Rajarajan, Roy, Amit, Kai, Marco, Svatoš, Aleš, Jirošová, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857447/
https://www.ncbi.nlm.nih.gov/pubmed/35242907
http://dx.doi.org/10.1016/j.dib.2022.107912
_version_ 1784654043897921536
author Ramakrishnan, Rajarajan
Roy, Amit
Kai, Marco
Svatoš, Aleš
Jirošová, Anna
author_facet Ramakrishnan, Rajarajan
Roy, Amit
Kai, Marco
Svatoš, Aleš
Jirošová, Anna
author_sort Ramakrishnan, Rajarajan
collection PubMed
description Eurasian spruce bark beetle, Ips typographus, is an aggressive pest among spruce vegetation. I. typographus host trees colonization is mediated by aggregation pheromone, consisting of 2-methyl-3-buten-2-ol and cis-verbenol produced in the beetle gut. Other biologically active compounds such as ipsdienol and verbenone have also been detected. 2-Methyl-3-buten-2-ol and ipsdienol are produced de-novo in the mevalonate pathway and cis-verbenol is oxidized from α-pinene sequestrated from the host. The pheromone production is presumably connected with further changes in the primary and secondary metabolisms in the beetle. To evaluate such possibilities, we obtained qualitative metabolomic data from the analysis of beetle guts in different life stages. We used Ultra-high-performance liquid chromatography-electrospray ionization-high resolution tandem mass spectrometry (UHPLC-ESI-HRMS/MS). The data were dereplicated using metabolomic software (XCMS, Camera, and Bio-Conductor) and approximately 3000 features were extracted. The metabolite was identified using GNPS databases and de-novo annotation in Sirius program followed by manual curation. Further, we obtained differential gene expression (DGE) of RNA sequencing data for mevalonate pathway genes and CytochromeP450 (CyP450) genes from the gut tissue of the beetle to delineate their role on life stage-specific pheromone biosynthesis. CyP450 gene families were classified according to subclasses and given individual expression patterns as heat maps. Three mevalonate pathway genes and five CyP450 gene relative expressions were analyzed using quantitative real-time (qRT) PCR, from the gut tissue of different life stage male/female beetles, as extended knowledge of related research article (Ramakrishnan et al., 2022). This data provides essential information on pheromone biosynthesis at the molecular level and supports further research on pheromone biosynthesis and detoxification in conifer bark beetles.
format Online
Article
Text
id pubmed-8857447
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88574472022-03-02 Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus Ramakrishnan, Rajarajan Roy, Amit Kai, Marco Svatoš, Aleš Jirošová, Anna Data Brief Data Article Eurasian spruce bark beetle, Ips typographus, is an aggressive pest among spruce vegetation. I. typographus host trees colonization is mediated by aggregation pheromone, consisting of 2-methyl-3-buten-2-ol and cis-verbenol produced in the beetle gut. Other biologically active compounds such as ipsdienol and verbenone have also been detected. 2-Methyl-3-buten-2-ol and ipsdienol are produced de-novo in the mevalonate pathway and cis-verbenol is oxidized from α-pinene sequestrated from the host. The pheromone production is presumably connected with further changes in the primary and secondary metabolisms in the beetle. To evaluate such possibilities, we obtained qualitative metabolomic data from the analysis of beetle guts in different life stages. We used Ultra-high-performance liquid chromatography-electrospray ionization-high resolution tandem mass spectrometry (UHPLC-ESI-HRMS/MS). The data were dereplicated using metabolomic software (XCMS, Camera, and Bio-Conductor) and approximately 3000 features were extracted. The metabolite was identified using GNPS databases and de-novo annotation in Sirius program followed by manual curation. Further, we obtained differential gene expression (DGE) of RNA sequencing data for mevalonate pathway genes and CytochromeP450 (CyP450) genes from the gut tissue of the beetle to delineate their role on life stage-specific pheromone biosynthesis. CyP450 gene families were classified according to subclasses and given individual expression patterns as heat maps. Three mevalonate pathway genes and five CyP450 gene relative expressions were analyzed using quantitative real-time (qRT) PCR, from the gut tissue of different life stage male/female beetles, as extended knowledge of related research article (Ramakrishnan et al., 2022). This data provides essential information on pheromone biosynthesis at the molecular level and supports further research on pheromone biosynthesis and detoxification in conifer bark beetles. Elsevier 2022-02-08 /pmc/articles/PMC8857447/ /pubmed/35242907 http://dx.doi.org/10.1016/j.dib.2022.107912 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Ramakrishnan, Rajarajan
Roy, Amit
Kai, Marco
Svatoš, Aleš
Jirošová, Anna
Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus
title Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus
title_full Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus
title_fullStr Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus
title_full_unstemmed Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus
title_short Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus
title_sort metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest ips typographus
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857447/
https://www.ncbi.nlm.nih.gov/pubmed/35242907
http://dx.doi.org/10.1016/j.dib.2022.107912
work_keys_str_mv AT ramakrishnanrajarajan metabolomeandtranscriptomerelateddatasetforpheromonebiosynthesisinanaggressiveforestpestipstypographus
AT royamit metabolomeandtranscriptomerelateddatasetforpheromonebiosynthesisinanaggressiveforestpestipstypographus
AT kaimarco metabolomeandtranscriptomerelateddatasetforpheromonebiosynthesisinanaggressiveforestpestipstypographus
AT svatosales metabolomeandtranscriptomerelateddatasetforpheromonebiosynthesisinanaggressiveforestpestipstypographus
AT jirosovaanna metabolomeandtranscriptomerelateddatasetforpheromonebiosynthesisinanaggressiveforestpestipstypographus