Cargando…

Comment on 'Long noncoding RNA UCA1 promotes glutamine-driven anaplerosis of bladder cancer by interacting with hnRNP I/L to upregulate GPT2 expression' by Chen et al.'”

Bladder cancer is prevalent cancer worldwide with poor outcomes for patients with high-grade disease. Emerging evidence shows that alteration of metabolic status drives tumorigenesis in bladder cancer. As long noncoding RNA urothelial cancer associated 1 (UCA1) is known to play an essential role in...

Descripción completa

Detalles Bibliográficos
Autor principal: Chen, Chi-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857590/
https://www.ncbi.nlm.nih.gov/pubmed/35182956
http://dx.doi.org/10.1016/j.tranon.2022.101372
Descripción
Sumario:Bladder cancer is prevalent cancer worldwide with poor outcomes for patients with high-grade disease. Emerging evidence shows that alteration of metabolic status drives tumorigenesis in bladder cancer. As long noncoding RNA urothelial cancer associated 1 (UCA1) is known to play an essential role in cancer metabolisms, such as glycolysis and glutaminolysis. Chen et al. report the novel function of UCA1 in glutamine metabolism through interacting with heterogeneous nuclear ribonucleoproteins (hnRNPs) I and L (hnRNP I/L). This study reveals that UCA1 promotes glutamic pyruvate transaminase 2 (GPT2) expression at the transcription level in mechanistic studies. Inhibition of either UCA1, hnRNPI/L, or GPT2 significantly reduces bladder cancer tumor growth in the mice model. This work explores a new mechanism for glutamine metabolism and the novel therapeutic target of the UCA1-hnRNPI/L-GPT2 axis across malignancies.