Cargando…
Application of Deep Learning Methods for Binarization of the Choroid in Optical Coherence Tomography Images
PURPOSE: The purpose of this study was to develop a deep learning model for automatic binarization of the choroidal tissue, separating choroidal blood vessels from nonvascular stromal tissue, in optical coherence tomography (OCT) images from healthy young subjects. METHODS: OCT images from an observ...
Autores principales: | Muller, Joshua, Alonso-Caneiro, David, Read, Scott A., Vincent, Stephen J., Collins, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857621/ https://www.ncbi.nlm.nih.gov/pubmed/35157030 http://dx.doi.org/10.1167/tvst.11.2.23 |
Ejemplares similares
-
Choroidal structure determined by binarizing optical coherence tomography images in eyes with reticular pseudodrusen
por: Masuda, Naonori, et al.
Publicado: (2017) -
Features of the Choroidal Structures in Myopic Children Based on Image Binarization of Optical Coherence Tomography
por: Li, Zhouyue, et al.
Publicado: (2020) -
Diurnal changes in choroidal optical coherence tomography angiography indices over 24 hours in healthy young adults
por: Lal, Barsha, et al.
Publicado: (2023) -
A review of generative adversarial network applications in optical coherence tomography image analysis
por: Kugelman, Jason, et al.
Publicado: (2022) -
Automatic choroidal segmentation in OCT images using supervised deep learning methods
por: Kugelman, Jason, et al.
Publicado: (2019)