Cargando…

The effects of peritoneal dialysis on QT interval in ESRD patients

BACKGROUND: Patients with chronic kidney disease (CKD) are at a high risk of fatal arrhythmias. The extended corrected QT (QTc) interval is a hallmark of ventricular arrhythmias and sudden cardiac death. Previous studies have shown that QT interval and QTc are prolonged with the decline in renal fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wenjing, Liang, Yu, Lv, Jia, Li, Yan, Sun, Jiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857851/
https://www.ncbi.nlm.nih.gov/pubmed/35180850
http://dx.doi.org/10.1186/s12882-022-02685-y
Descripción
Sumario:BACKGROUND: Patients with chronic kidney disease (CKD) are at a high risk of fatal arrhythmias. The extended corrected QT (QTc) interval is a hallmark of ventricular arrhythmias and sudden cardiac death. Previous studies have shown that QT interval and QTc are prolonged with the decline in renal function. However, there were no available results for patients with peritoneal dialysis (PD). In this study, we examined changes in QT interval and QTc in patients with end-stage renal disease (ESRD) who underwent peritoneal dialysis. METHODS: A total of 66 ESRD patients who received PD, including 50 males and 16 females, with an average age of 43.56 ± 15.15 years, were enrolled. The follow-up lasted 1 year. The demographics and the etiology of patients were recorded. QTc and clinical/biochemical indexes before dialysis and at 6 and 12 months were determined and analyzed. Dialysis adequacy and peritoneal transport function were assessed in each patient. Analysis of variance (ANOVA), least significant difference (LSD) or Tamhane’s T2, Paired T-test, Chi-square test, multiple linear regression analysis, and Pearson correlation coefficient were used to analyze the data. P < 0.05 was considered as statistically significant. RESULTS: With reference to etiology, 37 patients (56.06%) had chronic nephritis, and 11 (16.67%) had diabetic nephropathy. Most of the peritoneal transport functions were low average transport (25, 37.88%), while the least were high transport (2, 3.03%).During the follow-up period, all patients had adequate peritoneal dialysis. Compared with a baseline before dialysis, anemia, low albumin, blood pressure, blood urea nitrogen, creatinine, uric acid, potassium, calcium, phosphorus, and parathyroid hormone improved after 6 and 12 months, while the residual renal function gradually decreased during the follow-up. The mean QTc of all patients was stable during the follow-up period. According to gender, the QTc in males and female patients were similar. Before PD, diastolic blood pressure, calcium concentration, and hemoglobin level were negatively correlated with QTc in end-stage renal disease patients; After PD, the observed clinical indexes were no longer relevant to QTc. CONCLUSION: Unlike hemodialysis-induced QTc prolongation, PD did not increase the patient’s QT interval and QTc interval, which suggested that myocardial electrical activity might be more stable in patients with adequate peritoneal dialysis.