Cargando…

Methods to split cognitive task data for estimating split-half reliability: A comprehensive review and systematic assessment

Estimating the reliability of cognitive task datasets is commonly done via split-half methods. We review four methods that differ in how the trials are split into parts: a first-second half split, an odd-even trial split, a permutated split, and a Monte Carlo-based split. Additionally, each splittin...

Descripción completa

Detalles Bibliográficos
Autores principales: Pronk, Thomas, Molenaar, Dylan, Wiers, Reinout W., Murre, Jaap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858277/
https://www.ncbi.nlm.nih.gov/pubmed/34100223
http://dx.doi.org/10.3758/s13423-021-01948-3
Descripción
Sumario:Estimating the reliability of cognitive task datasets is commonly done via split-half methods. We review four methods that differ in how the trials are split into parts: a first-second half split, an odd-even trial split, a permutated split, and a Monte Carlo-based split. Additionally, each splitting method could be combined with stratification by task design. These methods are reviewed in terms of the degree to which they are confounded with four effects that may occur in cognitive tasks: effects of time, task design, trial sampling, and non-linear scoring. Based on the theoretical review, we recommend Monte Carlo splitting (possibly in combination with stratification by task design) as being the most robust method with respect to the four confounds considered. Next, we estimated the reliabilities of the main outcome variables from four cognitive task datasets, each (typically) scored with a different non-linear algorithm, by systematically applying each splitting method. Differences between methods were interpreted in terms of confounding effects inflating or attenuating reliability estimates. For three task datasets, our findings were consistent with our model of confounding effects. Evidence for confounding effects was strong for time and task design and weak for non-linear scoring. When confounding effects occurred, they attenuated reliability estimates. For one task dataset, findings were inconsistent with our model but they may offer indicators for assessing whether a split-half reliability estimate is appropriate. Additionally, we make suggestions on further research of reliability estimation, supported by a compendium R package that implements each of the splitting methods reviewed here.