Cargando…

Dispersal patterns of oribatid mites across habitats and seasons

Oribatid mites are tiny arthropods that are common in all soils of the world; however, they also occur in microhabitats above the soil such as lichens, mosses, on the bark of trees and in suspended soils. For understanding oribatid mite community structure, it is important to know whether they are d...

Descripción completa

Detalles Bibliográficos
Autores principales: Cordes, Peter Hans, Maraun, Mark, Schaefer, Ina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858284/
https://www.ncbi.nlm.nih.gov/pubmed/35038077
http://dx.doi.org/10.1007/s10493-022-00686-y
Descripción
Sumario:Oribatid mites are tiny arthropods that are common in all soils of the world; however, they also occur in microhabitats above the soil such as lichens, mosses, on the bark of trees and in suspended soils. For understanding oribatid mite community structure, it is important to know whether they are dispersal limited. The aim of this study was to investigate the importance of oribatid mite dispersal using Malaise traps to exclude sole passive wind-dispersal. Oribatid mite communities were collected over a 3-year period from five habitat types (coniferous forests, deciduous forests, mixed forests, meadows, bog/heathlands sites) and three seasons (spring, summer, autumn) in Sweden. Mites entered traps either by walking or by phoresy, i.e., by being attached to flying insects. We hypothesized (1) that oribatid mite communities in the traps differ between habitats, indicating habitat-limited dispersal, and (2) that oribatid mite communities differ among seasons suggesting that dispersal varies due to changing environmental conditions such as moisture or resource availability. The majority of the collected species were not typically soil-living species but rather from habitats such as trees, lichens and mosses (e.g., Carabodes labyrinthicus, Cymbaeremaeus cymba, Diapterobates humeralis and Phauloppia lucorum) indicating that walking into the traps or entering them via phoresy are of greater importance for aboveground than for soil-living species. Overall, oribatid mite communities collected in the traps likely originated from the surrounding local habitat suggesting that long distance dispersal of oribatid mites is scarce. Significant differences among seasons indicate higher dispersal during warm and dry periods of the year. Notably, 16 species of oribatid mites collected in our study were sampled for the first time in Sweden. This study also demonstrates that Malaise traps are a meaningful tool to investigate spatial and temporal patterns of oribatid mite communities.