Cargando…
Attention-based 3D CNN with residual connections for efficient ECG-based COVID-19 detection
BACKGROUND: The world has been suffering from the COVID-19 pandemic since 2019. More than 5 million people have died. Pneumonia is caused by the COVID-19 virus, which can be diagnosed using chest X-ray and computed tomography (CT) scans. COVID-19 also causes clinical and subclinical cardiovascular i...
Autores principales: | Sobahi, Nebras, Sengur, Abdulkadir, Tan, Ru-San, Acharya, U. Rajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858432/ https://www.ncbi.nlm.nih.gov/pubmed/35219186 http://dx.doi.org/10.1016/j.compbiomed.2022.105335 |
Ejemplares similares
-
Explainable COVID-19 detection using fractal dimension and vision transformer with Grad-CAM on cough sounds
por: Sobahi, Nebras, et al.
Publicado: (2022) -
Interpatient ECG Arrhythmia Detection by Residual Attention CNN
por: Xu, Pengyao, et al.
Publicado: (2022) -
LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signals
por: Atila, Orhan, et al.
Publicado: (2023) -
Efficient Classification of ECG Images Using a Lightweight CNN with Attention Module and IoT
por: Sadad, Tariq, et al.
Publicado: (2023) -
Efficient COVID-19 Segmentation from CT Slices Exploiting Semantic Segmentation with Integrated Attention Mechanism
por: Budak, Ümit, et al.
Publicado: (2021)