Cargando…
GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle
BACKGROUND: Urinary nitrogen leakage is an environmental concern in dairy cattle. Selection for reduced urinary nitrogen leakage may be done using indicator traits such as milk urea nitrogen (MUN). The result of a previous study indicated that the genetic correlation between MUN in Australia (AUS) a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858489/ https://www.ncbi.nlm.nih.gov/pubmed/35183113 http://dx.doi.org/10.1186/s12711-022-00707-9 |
_version_ | 1784654250171695104 |
---|---|
author | van den Berg, Irene Ho, Phuong N. Nguyen, Tuan V. Haile-Mariam, Mekonnen MacLeod, Iona M. Beatson, Phil R. O’Connor, Erin Pryce, Jennie E. |
author_facet | van den Berg, Irene Ho, Phuong N. Nguyen, Tuan V. Haile-Mariam, Mekonnen MacLeod, Iona M. Beatson, Phil R. O’Connor, Erin Pryce, Jennie E. |
author_sort | van den Berg, Irene |
collection | PubMed |
description | BACKGROUND: Urinary nitrogen leakage is an environmental concern in dairy cattle. Selection for reduced urinary nitrogen leakage may be done using indicator traits such as milk urea nitrogen (MUN). The result of a previous study indicated that the genetic correlation between MUN in Australia (AUS) and MUN in New Zealand (NZL) was only low to moderate (between 0.14 and 0.58). In this context, an alternative is to select sequence variants based on genome-wide association studies (GWAS) with a view to improve genomic prediction accuracies. A GWAS can also be used to detect quantitative trait loci (QTL) associated with MUN. Therefore, our objectives were to perform within-country GWAS and a meta-GWAS for MUN using records from up to 33,873 dairy cows and imputed whole-genome sequence data, to compare QTL detected in the GWAS for MUN in AUS and NZL, and to use sequence variants selected from the meta-GWAS to improve the prediction accuracy for MUN based on a joint AUS-NZL reference set. RESULTS: Using the meta-GWAS, we detected 14 QTL for MUN, located on chromosomes 1, 6, 11, 14, 19, 22, 26 and the X chromosome. The three most significant QTL encompassed the casein genes on chromosome 6, PAEP on chromosome 11 and DGAT1 on chromosome 14. We selected 50,000 sequence variants that had the same direction of effect for MUN in AUS and MUN in NZL and that were most significant in the meta-analysis for the GWAS. The selected sequence variants yielded a genetic correlation between MUN in AUS and MUN in NZL of 0.95 and substantially increased prediction accuracy in both countries. CONCLUSIONS: Our results demonstrate how the sharing of data between two countries can increase the power of a GWAS and increase the accuracy of genomic prediction using a multi-country reference population and sequence variants selected based on a meta-GWAS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12711-022-00707-9. |
format | Online Article Text |
id | pubmed-8858489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-88584892022-02-23 GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle van den Berg, Irene Ho, Phuong N. Nguyen, Tuan V. Haile-Mariam, Mekonnen MacLeod, Iona M. Beatson, Phil R. O’Connor, Erin Pryce, Jennie E. Genet Sel Evol Research Article BACKGROUND: Urinary nitrogen leakage is an environmental concern in dairy cattle. Selection for reduced urinary nitrogen leakage may be done using indicator traits such as milk urea nitrogen (MUN). The result of a previous study indicated that the genetic correlation between MUN in Australia (AUS) and MUN in New Zealand (NZL) was only low to moderate (between 0.14 and 0.58). In this context, an alternative is to select sequence variants based on genome-wide association studies (GWAS) with a view to improve genomic prediction accuracies. A GWAS can also be used to detect quantitative trait loci (QTL) associated with MUN. Therefore, our objectives were to perform within-country GWAS and a meta-GWAS for MUN using records from up to 33,873 dairy cows and imputed whole-genome sequence data, to compare QTL detected in the GWAS for MUN in AUS and NZL, and to use sequence variants selected from the meta-GWAS to improve the prediction accuracy for MUN based on a joint AUS-NZL reference set. RESULTS: Using the meta-GWAS, we detected 14 QTL for MUN, located on chromosomes 1, 6, 11, 14, 19, 22, 26 and the X chromosome. The three most significant QTL encompassed the casein genes on chromosome 6, PAEP on chromosome 11 and DGAT1 on chromosome 14. We selected 50,000 sequence variants that had the same direction of effect for MUN in AUS and MUN in NZL and that were most significant in the meta-analysis for the GWAS. The selected sequence variants yielded a genetic correlation between MUN in AUS and MUN in NZL of 0.95 and substantially increased prediction accuracy in both countries. CONCLUSIONS: Our results demonstrate how the sharing of data between two countries can increase the power of a GWAS and increase the accuracy of genomic prediction using a multi-country reference population and sequence variants selected based on a meta-GWAS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12711-022-00707-9. BioMed Central 2022-02-19 /pmc/articles/PMC8858489/ /pubmed/35183113 http://dx.doi.org/10.1186/s12711-022-00707-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article van den Berg, Irene Ho, Phuong N. Nguyen, Tuan V. Haile-Mariam, Mekonnen MacLeod, Iona M. Beatson, Phil R. O’Connor, Erin Pryce, Jennie E. GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle |
title | GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle |
title_full | GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle |
title_fullStr | GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle |
title_full_unstemmed | GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle |
title_short | GWAS and genomic prediction of milk urea nitrogen in Australian and New Zealand dairy cattle |
title_sort | gwas and genomic prediction of milk urea nitrogen in australian and new zealand dairy cattle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858489/ https://www.ncbi.nlm.nih.gov/pubmed/35183113 http://dx.doi.org/10.1186/s12711-022-00707-9 |
work_keys_str_mv | AT vandenbergirene gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle AT hophuongn gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle AT nguyentuanv gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle AT hailemariammekonnen gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle AT macleodionam gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle AT beatsonphilr gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle AT oconnorerin gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle AT prycejenniee gwasandgenomicpredictionofmilkureanitrogeninaustralianandnewzealanddairycattle |