Cargando…
The synergism of spatial metabolomics and morphometry improves machine learning‐based renal tumour subtype classification
Autores principales: | Prade, Verena M., Sun, Na, Shen, Jian, Feuchtinger, Annette, Kunzke, Thomas, Buck, Achim, Schraml, Peter, Moch, Holger, Schwamborn, Kristina, Autenrieth, Michael, Gschwend, Jürgen E., Erlmeier, Franziska, Hartmann, Arndt, Walch, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858620/ https://www.ncbi.nlm.nih.gov/pubmed/35184396 http://dx.doi.org/10.1002/ctm2.666 |
Ejemplares similares
-
MALDI Mass Spectrometry Imaging—Prognostic Pathways and Metabolites for Renal Cell Carcinomas
por: Erlmeier, Franziska, et al.
Publicado: (2022) -
De novo discovery of metabolic heterogeneity with immunophenotype-guided imaging mass spectrometry
por: Prade, Verena M., et al.
Publicado: (2020) -
Patterns of Carbon-Bound
Exogenous Compounds Impact
Disease Pathophysiology in Lung Cancer Subtypes in Different Ways
por: Shen, Jian, et al.
Publicado: (2023) -
Spatial metabolomics identifies distinct tumor-specific and stroma-specific subtypes in patients with lung squamous cell carcinoma
por: Wang, Jun, et al.
Publicado: (2023) -
A simple preparation step to remove excess liquid lipids in white adipose tissue enabling improved detection of metabolites via MALDI-FTICR imaging MS
por: Wang, Qian, et al.
Publicado: (2022)