Cargando…
Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling
The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858996/ https://www.ncbi.nlm.nih.gov/pubmed/35243233 http://dx.doi.org/10.1016/j.isci.2022.103870 |
_version_ | 1784654355849281536 |
---|---|
author | Gomez-Soler, Maricel Gehring, Marina P. Lechtenberg, Bernhard C. Zapata-Mercado, Elmer Ruelos, Alyssa Matsumoto, Mike W. Hristova, Kalina Pasquale, Elena B. |
author_facet | Gomez-Soler, Maricel Gehring, Marina P. Lechtenberg, Bernhard C. Zapata-Mercado, Elmer Ruelos, Alyssa Matsumoto, Mike W. Hristova, Kalina Pasquale, Elena B. |
author_sort | Gomez-Soler, Maricel |
collection | PubMed |
description | The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2-specific monomeric peptides to engineer dimeric ligands with three different geometric configurations to combine a potential ability to differentially modulate EphA2 signaling responses with the high potency and prolonged receptor residence time characteristic of dimeric ligands. The different dimeric peptides readily induce EphA2 clustering, autophosphorylation and signaling, the best with sub-nanomolar potency. Yet, there are differences in two EphA2 signaling responses induced by peptides with different configurations, which exhibit distinct potency and efficacy. The peptides bias signaling when compared with the ephrinA1-Fc ligand and do so via different mechanisms. These findings provide insights into Eph receptor signaling, and proof-of-principle that different Eph signaling responses can be distinctly modulated. |
format | Online Article Text |
id | pubmed-8858996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88589962022-03-02 Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling Gomez-Soler, Maricel Gehring, Marina P. Lechtenberg, Bernhard C. Zapata-Mercado, Elmer Ruelos, Alyssa Matsumoto, Mike W. Hristova, Kalina Pasquale, Elena B. iScience Article The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2-specific monomeric peptides to engineer dimeric ligands with three different geometric configurations to combine a potential ability to differentially modulate EphA2 signaling responses with the high potency and prolonged receptor residence time characteristic of dimeric ligands. The different dimeric peptides readily induce EphA2 clustering, autophosphorylation and signaling, the best with sub-nanomolar potency. Yet, there are differences in two EphA2 signaling responses induced by peptides with different configurations, which exhibit distinct potency and efficacy. The peptides bias signaling when compared with the ephrinA1-Fc ligand and do so via different mechanisms. These findings provide insights into Eph receptor signaling, and proof-of-principle that different Eph signaling responses can be distinctly modulated. Elsevier 2022-02-04 /pmc/articles/PMC8858996/ /pubmed/35243233 http://dx.doi.org/10.1016/j.isci.2022.103870 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Gomez-Soler, Maricel Gehring, Marina P. Lechtenberg, Bernhard C. Zapata-Mercado, Elmer Ruelos, Alyssa Matsumoto, Mike W. Hristova, Kalina Pasquale, Elena B. Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling |
title | Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling |
title_full | Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling |
title_fullStr | Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling |
title_full_unstemmed | Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling |
title_short | Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling |
title_sort | ligands with different dimeric configurations potently activate the epha2 receptor and reveal its potential for biased signaling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858996/ https://www.ncbi.nlm.nih.gov/pubmed/35243233 http://dx.doi.org/10.1016/j.isci.2022.103870 |
work_keys_str_mv | AT gomezsolermaricel ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling AT gehringmarinap ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling AT lechtenbergbernhardc ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling AT zapatamercadoelmer ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling AT ruelosalyssa ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling AT matsumotomikew ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling AT hristovakalina ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling AT pasqualeelenab ligandswithdifferentdimericconfigurationspotentlyactivatetheepha2receptorandrevealitspotentialforbiasedsignaling |