Cargando…
Assessing the impact of different penalty factors of the Bayesian reconstruction algorithm Q.Clear on in vivo low count kinetic analysis of [(11)C]PHNO brain PET-MR studies
INTRODUCTION: Q.Clear is a Bayesian penalised likelihood (BPL) reconstruction algorithm available on General Electric (GE) Positron Emission Tomography (PET)-Computed Tomography (CT) and PET-Magnetic Resonance (MR) scanners. This algorithm is regulated by a β value which acts as a noise penalisation...
Autores principales: | Ribeiro, Daniela, Hallett, William, Howes, Oliver, McCutcheon, Robert, Nour, Matthew M., Tavares, Adriana A. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859021/ https://www.ncbi.nlm.nih.gov/pubmed/35184229 http://dx.doi.org/10.1186/s13550-022-00883-1 |
Ejemplares similares
-
Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies
por: Ribeiro, Daniela, et al.
Publicado: (2021) -
Impact of γ factor in the penalty function of Bayesian penalized likelihood reconstruction (Q.Clear) to achieve high-resolution PET images
por: Miwa, Kenta, et al.
Publicado: (2023) -
Impact of the Noise Penalty Factor on Quantification in Bayesian Penalized Likelihood (Q.Clear) Reconstructions of (68)Ga-PSMA PET/CT Scans
por: Rijnsdorp, Sjoerd, et al.
Publicado: (2021) -
The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG PET in simultaneous PET/MR
por: Tian, Defeng, et al.
Publicado: (2022) -
Optimization of Q.Clear reconstruction for dynamic (18)F PET imaging
por: Lysvik, Elisabeth Kirkeby, et al.
Publicado: (2023)