Cargando…
Effects of Carbon Dioxide and Temperature on the Oxygen-Hemoglobin Dissociation Curve of Human Blood: Implications for Avalanche Victims
Completely avalanche-buried patients are frequently exposed to a combination of hypoxia and hypercapnia with a risk of normothermic cardiac arrest. Patients with a long burial time and an air pocket are exposed to a combination of hypoxia, hypercapnia, and hypothermia which may lead to the developme...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859098/ https://www.ncbi.nlm.nih.gov/pubmed/35198571 http://dx.doi.org/10.3389/fmed.2021.808025 |
Sumario: | Completely avalanche-buried patients are frequently exposed to a combination of hypoxia and hypercapnia with a risk of normothermic cardiac arrest. Patients with a long burial time and an air pocket are exposed to a combination of hypoxia, hypercapnia, and hypothermia which may lead to the development of the “triple H syndrome”. This specific combination has several pathophysiological implications, particularly on the cardiovascular system and oxygen transport (oxygen supply and oxygen consumption). To examine the effects on hemoglobin oxygen affinity, we investigated venous blood samples from 15 female and 15 male healthy subjects. In a factorial design of four different carbon dioxide partial pressure (PCO(2)) levels (20, 40, 60, and 80 mmHg) and five different temperature levels (13.7°C, 23°C, 30°C, 37°C, and 42°C), 30 unbuffered whole blood samples were analyzed in a newly developed in vitro method for high-throughput oxygen dissociation curve (ODC) measurements. P50s, Hill coefficients, CO(2)-Bohr coefficients, and temperature coefficients were analyzed using a linear mixed model (LMM). Mean P50 at baseline (37°C, 40 mmHg PCO(2)) was 27.1 ± 2.6 mmHg. Both CO(2)-Bohr (p < 0.001) and temperature coefficients (p < 0.001) had a significant effect on P50. The absolute CO(2) effect was still pronounced at normothermic and febrile temperatures, whereas at low temperatures, the relative CO(2) effect (expressed by CO(2)-Bohr coefficient; p < 0.001, interaction) was increased. The larger impact of PCO(2) on oxygen affinity at low temperature may be caused by the competition of 2,3-BPG with PCO(2) and the exothermic binding characteristic of 2,3-BPG. In a model of an avalanche burial, based on published data of CO(2) levels and cooling rates, we calculated the resulting P50 for this specific condition based on the here-reported PCO(2) and temperature effect on ODC. Depending on the degree of hypercapnia and hypothermia, a potentially beneficial increase in hemoglobin oxygen affinity in the hypoxic condition might ensue. |
---|