Cargando…
Deep Active Learning via Open-Set Recognition
In many applications, data is easy to acquire but expensive and time-consuming to label, prominent examples include medical imaging and NLP. This disparity has only grown in recent years as our ability to collect data improves. Under these constraints, it makes sense to select only the most informat...
Autores principales: | Mandivarapu, Jaya Krishna, Camp, Blake, Estrada, Rolando |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859322/ https://www.ncbi.nlm.nih.gov/pubmed/35198969 http://dx.doi.org/10.3389/frai.2022.737363 |
Ejemplares similares
-
Self-Net: Lifelong Learning via Continual Self-Modeling
por: Mandivarapu, Jaya Krishna, et al.
Publicado: (2020) -
A deep learning method for the recognition of solar radio burst spectrum
por: Guo, Jun-Cheng, et al.
Publicado: (2022) -
Kinship verification and recognition based on handcrafted and deep learning feature-based techniques
por: Nader, Nermeen, et al.
Publicado: (2021) -
Deep learning-based approach for Arabic open domain question answering
por: Alsubhi, Kholoud, et al.
Publicado: (2022) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022)