Cargando…

Effects of Microwave-Assisted Liquid Hot Water Pretreatment on Chemical Composition and Structure of Moso Bamboo

The effects of microwave assisted liquid hot water (MA-LHW) pretreatment on the chemical composition of Moso bamboo were investigated, and the fiber structure of pretreated residues were studied. The results showed that MA-LHW pretreatment had high selectivity for the degradation of hemicellulose in...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Jie-Yu, Zhang, Ning, Jiang, Jian-Chun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859409/
https://www.ncbi.nlm.nih.gov/pubmed/35198552
http://dx.doi.org/10.3389/fbioe.2021.821982
Descripción
Sumario:The effects of microwave assisted liquid hot water (MA-LHW) pretreatment on the chemical composition of Moso bamboo were investigated, and the fiber structure of pretreated residues were studied. The results showed that MA-LHW pretreatment had high selectivity for the degradation of hemicellulose in Moso bamboo, and the extracted hemicellulose could be used to prepare xylooligosaccharide through enzyme depolymerization. The degradation rates of cellulose and lignin after MA-LHW pretreatment were only 14.73% and 7.18%, which were significantly lower than those of LHW pretreatment; 155.0 mg/g xylobiose and 61.0 mg/g xylotrisoe can be obtained after enzymatic hydrolysis, and the yield of xylo-oligosaccharide reached 80.59% of the theoretical conversion rate. MA-LHW pretreatment increased the removal of hemicellulose, lignin, and other non-crystalline parts in bamboo materials, and more cellulose with crystalline structure was retained, which increased the CrI value of Moso bamboo by 14.84%. FTIR spectra showed that the characteristic peak intensity of hemicellulose was significantly reduced after MA-LHW pretreatment, which confirmed the selective degradation of hemicellulose by MA-LAW pretreatment. Moreover, MA-LHW pretreatment also destroyed O-H, C-H, C-O-C, and β-glucoside bonds in Moso bamboo fiber, caused by the recombination and synthesis of some groups (-CH(2) and C=O) of cellulose, hemicellulose, and lignin destroyed under pretreatment conditions.