Cargando…
A proof-of-concept study on mortality prediction with machine learning algorithms using burn intensive care data
INTRODUCTION: Burn injuries are a common traumatic injury. Large burns have high mortality requiring intensive care and accurate mortality predictions. To assess if machine learning (ML) could improve predictions, ML algorithms were tested and compared with the original and revised Baux score. METHO...
Autores principales: | Fransén, Jian, Lundin, Johan, Fredén, Filip, Huss, Fredrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859689/ https://www.ncbi.nlm.nih.gov/pubmed/35198237 http://dx.doi.org/10.1177/20595131211066585 |
Ejemplares similares
-
Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery
por: Boissin, Constance, et al.
Publicado: (2023) -
Author Correction: Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery
por: Boissin, Constance, et al.
Publicado: (2023) -
Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept
por: Tran, Nam K., et al.
Publicado: (2020) -
Matrix Metalloproteinases -8 and -9 and Tissue Inhibitor of Metalloproteinase-1 in Burn Patients. A Prospective Observational Study
por: Hästbacka, Johanna, et al.
Publicado: (2015) -
A Machine Learning Sepsis Prediction Algorithm for Intended Intensive Care Unit Use (NAVOY Sepsis): Proof-of-Concept Study
por: Persson, Inger, et al.
Publicado: (2021)