Cargando…
Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review
BACKGROUND: Improved breast cancer risk assessment models are needed to enable personalized screening strategies that achieve better harm-to-benefit ratio based on earlier detection and better breast cancer outcomes than existing screening guidelines. Computational mammographic phenotypes have demon...
Autores principales: | Gastounioti, Aimilia, Desai, Shyam, Ahluwalia, Vinayak S., Conant, Emily F., Kontos, Despina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859891/ https://www.ncbi.nlm.nih.gov/pubmed/35184757 http://dx.doi.org/10.1186/s13058-022-01509-z |
Ejemplares similares
-
Incorporating Breast Anatomy in Computational Phenotyping of Mammographic Parenchymal Patterns for Breast Cancer Risk Estimation
por: Gastounioti, Aimilia, et al.
Publicado: (2018) -
Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment
por: Gastounioti, Aimilia, et al.
Publicado: (2016) -
External Validation of a Mammography-Derived AI-Based Risk Model in a U.S. Breast Cancer Screening Cohort of White and Black Women
por: Gastounioti, Aimilia, et al.
Publicado: (2022) -
Incorporating Robustness to Imaging Physics into Radiomic Feature Selection for Breast Cancer Risk Estimation
por: Acciavatti, Raymond J., et al.
Publicado: (2021) -
Artificial intelligence and convolution neural networks assessing mammographic images: a narrative literature review
por: Wong, Dennis Jay, et al.
Publicado: (2020)