Cargando…
Use of a deep learning and random forest approach to track changes in the predictive nature of socioeconomic drivers of under-5 mortality rates in sub-Saharan Africa
OBJECTIVES: We used machine learning algorithms to track how the ranks of importance and the survival outcome of four socioeconomic determinants (place of residence, mother’s level of education, wealth index and sex of the child) of under-5 mortality rate (U5MR) in sub-Saharan Africa have evolved. S...
Autores principales: | Nasejje, Justine B, Mbuvha, Rendani, Mwambi, Henry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860054/ https://www.ncbi.nlm.nih.gov/pubmed/35177443 http://dx.doi.org/10.1136/bmjopen-2021-049786 |
Ejemplares similares
-
Application of random survival forests in understanding the determinants of under-five child mortality in Uganda in the presence of covariates that satisfy the proportional and non-proportional hazards assumption
por: Nasejje, Justine B., et al.
Publicado: (2017) -
A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data
por: Nasejje, Justine B., et al.
Publicado: (2017) -
Bayesian inference of COVID-19 spreading rates in South Africa
por: Mbuvha, Rendani, et al.
Publicado: (2020) -
The phenotype of type 1 diabetes in sub-Saharan Africa
por: Katte, Jean Claude, et al.
Publicado: (2023) -
Key populations and Sub-Saharan Africa's HIV response
por: Moyo, Enos, et al.
Publicado: (2023)