Cargando…
HPTMT Parallel Operators for High Performance Data Science and Data Engineering
Data-intensive applications are becoming commonplace in all science disciplines. They are comprised of a rich set of sub-domains such as data engineering, deep learning, and machine learning. These applications are built around efficient data abstractions and operators that suit the applications of...
Autores principales: | Abeykoon, Vibhatha, Kamburugamuve, Supun, Widanage, Chathura, Perera, Niranda, Uyar, Ahmet, Kanewala, Thejaka Amila, von Laszewski, Gregor, Fox, Geoffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860100/ https://www.ncbi.nlm.nih.gov/pubmed/35198971 http://dx.doi.org/10.3389/fdata.2021.756041 |
Ejemplares similares
-
Parallel Processing Strategies for Big Geospatial Data
por: Werner, Martin
Publicado: (2019) -
Including Vulnerable Populations in the Assessment of Data From Vulnerable Populations
por: Jackson, Latifa, et al.
Publicado: (2019) -
Data Consistency for Data-Driven Smart Energy Assessment
por: Chicco, Gianfranco
Publicado: (2021) -
Editorial: Automated data curation and data governance automation
por: Talburt, John R., et al.
Publicado: (2023) -
Named Data Networking for Genomics Data Management and Integrated Workflows
por: Ogle, Cameron, et al.
Publicado: (2021)