Cargando…
Automated annotation of birdsong with a neural network that segments spectrograms
Songbirds provide a powerful model system for studying sensory-motor learning. However, many analyses of birdsong require time-consuming, manual annotation of its elements, called syllables. Automated methods for annotation have been proposed, but these methods assume that audio can be cleanly segme...
Autores principales: | Cohen, Yarden, Nicholson, David Aaron, Sanchioni, Alexa, Mallaber, Emily K, Skidanova, Viktoriya, Gardner, Timothy J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860439/ https://www.ncbi.nlm.nih.gov/pubmed/35050849 http://dx.doi.org/10.7554/eLife.63853 |
Ejemplares similares
-
Birdsong: Is It Music to Their Ears?
por: Earp, Sarah E., et al.
Publicado: (2012) -
The Neural Basis of Birdsong
por: Nottebohm, Fernando
Publicado: (2005) -
EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks
por: Gao, Dongrui, et al.
Publicado: (2023) -
Birdsong and the Neural Regulation of Positive Emotion
por: Riters, Lauren V., et al.
Publicado: (2022) -
NIPS4Bplus: a richly annotated birdsong audio dataset
por: Morfi, Veronica, et al.
Publicado: (2019)