Cargando…
From genotype to phenotype in Arabidopsis thaliana: in-silico genome interpretation predicts 288 phenotypes from sequencing data
In many cases, the unprecedented availability of data provided by high-throughput sequencing has shifted the bottleneck from a data availability issue to a data interpretation issue, thus delaying the promised breakthroughs in genetics and precision medicine, for what concerns Human genetics, and ph...
Autores principales: | Raimondi, Daniele, Corso, Massimiliano, Fariselli, Piero, Moreau, Yves |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860592/ https://www.ncbi.nlm.nih.gov/pubmed/34792168 http://dx.doi.org/10.1093/nar/gkab1099 |
Ejemplares similares
-
Editorial: Towards genome interpretation: Computational methods to model the genotype-phenotype relationship
por: Raimondi, Daniele, et al.
Publicado: (2022) -
An interpretable low-complexity machine learning framework for robust exome-based in-silico diagnosis of Crohn’s disease patients
por: Raimondi, Daniele, et al.
Publicado: (2020) -
Identifying functional gene sets from hierarchically clustered expression data: map of abiotic stress regulated genes in Arabidopsis thaliana
por: Kankainen, Matti, et al.
Publicado: (2006) -
Understanding mutational effects in digenic diseases
por: Gazzo, Andrea, et al.
Publicado: (2017) -
Inducible directed evolution of complex phenotypes in bacteria
por: Al’Abri, Ibrahim S, et al.
Publicado: (2022)