Cargando…
Artificial Intelligence-based Tumor Segmentation in Mouse Models of Lung Adenocarcinoma
BACKGROUND: Mouse models are highly effective for studying the pathophysiology of lung adenocarcinoma and evaluating new treatment strategies. Treatment efficacy is primarily determined by the total tumor burden measured on excised tumor specimens. The measurement process is time-consuming and prone...
Autores principales: | Arlova, Alena, Jin, Chengcheng, Wong-Rolle, Abigail, Chen, Eric S., Lisle, Curtis, Brown, G. Thomas, Lay, Nathan, Choyke, Peter L., Turkbey, Baris, Harmon, Stephanie, Zhao, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860735/ https://www.ncbi.nlm.nih.gov/pubmed/35242446 http://dx.doi.org/10.1016/j.jpi.2022.100007 |
Ejemplares similares
-
Tasks for artificial intelligence in prostate MRI
por: Belue, Mason J., et al.
Publicado: (2022) -
Prostate cancer detection from multi-institution multiparametric MRIs using deep convolutional neural networks system (Erratum)
por: Sumathipala, Yohan, et al.
Publicado: (2019) -
Deep Domain Adversarial Learning for Species-Agnostic Classification of Histologic Subtypes of Osteosarcoma
por: Patkar, Sushant, et al.
Publicado: (2023) -
Large Scale Comparative Deconvolution Analysis of the Canine and Human Osteosarcoma Tumor Microenvironment Uncovers Conserved Clinically Relevant Subtypes
por: Patkar, Sushant, et al.
Publicado: (2023) -
Quick guide on radiology image pre-processing for deep learning applications in prostate cancer research
por: Masoudi, Samira, et al.
Publicado: (2021)