Cargando…
Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information on the Incidence of Cardiovascular Disorders
OBJECTIVE: The biological age progression of the heart varies from person to person. We developed a deep learning model (DLM) to predict the biological age via ECG to explore its contribution to future cardiovascular diseases (CVDs). METHODS: There were 71,741 cases ranging from 20 to 80 years old r...
Autores principales: | Chang, Chiao-Hsiang, Lin, Chin-Sheng, Luo, Yu-Sheng, Lee, Yung-Tsai, Lin, Chin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860826/ https://www.ncbi.nlm.nih.gov/pubmed/35211522 http://dx.doi.org/10.3389/fcvm.2022.754909 |
Ejemplares similares
-
Mortality risk prediction of the electrocardiogram as an informative indicator of cardiovascular diseases
por: Tsai, Dung-Jang, et al.
Publicado: (2023) -
Artificial Intelligence-Enabled Electrocardiogram Estimates Left Atrium Enlargement as a Predictor of Future Cardiovascular Disease
por: Lou, Yu-Sheng, et al.
Publicado: (2022) -
A Deep Learning Algorithm for Detecting Acute Pericarditis by Electrocardiogram
por: Liu, Yu-Lan, et al.
Publicado: (2022) -
Artificial Intelligence-Enabled Electrocardiography Detects Hypoalbuminemia and Identifies the Mechanism of Hepatorenal and Cardiovascular Events
por: Lee, Yung-Tsai, et al.
Publicado: (2022) -
Deep Learning Algorithm for Management of Diabetes Mellitus via Electrocardiogram-Based Glycated Hemoglobin (ECG-HbA1c): A Retrospective Cohort Study
por: Lin, Chin-Sheng, et al.
Publicado: (2021)