Cargando…

MiR-322-5p Alleviates Cell Injury and Impairment of Cognitive Function in Vascular Dementia by Targeting TSPAN5

PURPOSE: As the population ages, the incidence of clinical dementia has been rising around the world. It has been reported that microRNAs act as key diagnostic biomarkers and targets for various neurological conditions, including dementia. MiR-322-5p has been revealed to play an important role in mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Wei, Zhang, Jie, Zhou, Bin, Chang, Huanxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Yonsei University College of Medicine 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860938/
https://www.ncbi.nlm.nih.gov/pubmed/35184431
http://dx.doi.org/10.3349/ymj.2022.63.3.282
Descripción
Sumario:PURPOSE: As the population ages, the incidence of clinical dementia has been rising around the world. It has been reported that microRNAs act as key diagnostic biomarkers and targets for various neurological conditions, including dementia. MiR-322-5p has been revealed to play an important role in multiple diseases. In this study, we aimed to investigate the role and regulatory mechanism of miR-322-5p in vascular dementia. MATERIALS AND METHODS: In this study, neonatal rat neurons (NRNs) were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to induce cell injury. The animals were subjected to permanent bilateral occlusion of the carotid arteries (2-vessel occlusion, 2VO) to induce the model of chronic brain hypoperfusion. RESULTS: MiR-322-5p expression was significantly downregulated in the neurons exposed to OGD/R and the hippocampi of 2VO rats. Overexpression of miR-322-5p ameliorated cell apoptosis and the inflammatory response in vitro. In a mechanistic study, miR-322-5p was confirmed to directly target and negatively regulate tetraspanin 5 (TSPAN5) in cultured NRNs. Moreover, overexpression of TSPAN5 could counteract the effects of miR-322-5p overexpression on cell apoptosis and the inflammatory response in OGD/R-treated neurons. More importantly, miR-322-5p improved cognitive ability and inhibited inflammatory production in 2VO rats. CONCLUSION: Overall, the results suggest that miR-322-5p alleviates vascular dementia development by targeting TSPAN5. This discovery may provide a potential therapeutic target for dementia.